res.list: rest of arguments as for call to C fitabn
data.df: a data frame containing the data used for learning the network, binary variables must be declared as factors, and no missing values all allowed in any variable.
dag.m: adjacency matrix
var.types: distributions in terms of a numeric code
max.parents: max number of parents over all nodes in dag (different from other max.parents definitions).
mean: the prior mean for all the Gaussian additive terms for each node. INLA argument control.fixed=list(mean.intercept=...) and control.fixed=list(mean=...).
prec: the prior precision (τ=σ21) for all the Gaussian additive term for each node. INLA argument control.fixed=list(prec.intercept=...) and control.fixed=list(prec=...).
loggam.shape: the shape parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec =list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).
loggam.inv.scale: the inverse scale parameter in the Gamma distribution prior for the precision in a Gaussian node. INLA argument control.family=list(hyper = list(prec =list(prior="loggamma",param=c(loggam.shape, loggam.inv.scale)))).
max.iters: total number of iterations allowed when estimating the modes in Laplace approximation. passed to .Call("fit_single_node", ...).
epsabs: absolute error when estimating the modes in Laplace approximation for models with no random effects. Passed to .Call("fit_single_node", ...).
verbose: if TRUE then provides some additional output, in particular the code used to call INLA, if applicable.
error.verbose: logical, additional output in the case of errors occurring in the optimization. Passed to .Call("fit_single_node", ...).
trace: Non-negative integer. If positive, tracing information on the progress of the "L-BFGS-B" optimization is produced. Higher values may produce more tracing information. (There are six levels of tracing. To understand exactly what these do see the source code.). Passed to .Call("fit_single_node", ...).
grouped.vars: result returned from check.valid.groups. Column indexes of all variables which are affected from grouping effect.
group.ids: result returned from check.valid.groups. Vector of group allocation for each observation (row) in 'data.df'.
epsabs.inner: absolute error in the maximization step in the (nested) Laplace approximation for each random effect term. Passed to .Call("fit_single_node", ...).
max.iters.inner: total number of iterations in the maximization step in the nested Laplace approximation. Passed to .Call("fit_single_node", ...).
finite.step.size: suggested step length used in finite difference estimation of the derivatives for the (outer) Laplace approximation when estimating modes. Passed to .Call("fit_single_node", ...).
hessian.params: a numeric vector giving parameters for the adaptive algorithm, which determines the optimal stepsize in the finite-difference estimation of the hessian. First entry is the initial guess, second entry absolute error. Passed to .Call("fit_single_node", ...).
max.iters.hessian: integer, maximum number of iterations to use when determining an optimal finite difference approximation (Nelder-Mead). Passed to .Call("fit_single_node", ...).
min.pdf: the value of the posterior density function below which we stop the estimation only used when computing marginals, see details.
marginal.node: used in conjunction with marginal.param to allow bespoke estimate of a marginal density over a specific grid. value from 1 to the number of nodes.
marginal.param: used in conjunction with marginal.node. value of 1 is for intercept, see modes entry in results for the appropriate number.
variate.vec: a vector containing the places to evaluate the posterior marginal density, must be supplied if marginal.node is not null.
n.grid: recompute density on an equally spaced grid with n.grid points.
INLA.marginals: vector - TRUE if INLA used false otherwise
iter.max: same as max.iters in fit.control. Total number of iterations allowed when estimating the modes in Laplace approximation. Passed to .Call("fit_single_node", ...).
max.hessian.error: if the estimated log marginal likelihood when using an adaptive 5pt finite-difference rule for the Hessian differs by more than max.hessian.error from when using an adaptive 3pt rule then continue to minimize the local error by switching to the Brent-Dekker root bracketing method. Passed to .Call("fit_single_node", ...).
factor.brent: if using Brent-Dekker root bracketing method then define the outer most interval end points as the best estimate of h (stepsize) from the Nelder-Mead as h/factor.brent,h∗factor.brent). Passed to .Call("fit_single_node", ...).
maxiters.hessian.brent: maximum number of iterations allowed in the Brent-Dekker method. Passed to .Call("fit_single_node", ...).
num.intervals.brent: the number of initial different bracket segments to try in the Brent-Dekker method. Passed to .Call("fit_single_node", ...).
Returns
A named list with "modes", "error.code", "hessian.accuracy", "error.code.desc", "mliknode", "mlik", "mse", "coef", "used.INLA", "marginals".
See Also
Other Bayes: buildScoreCache(), calc.node.inla.glm(), calc.node.inla.glmm(), fitAbn()