ashr2.2-63 package

Methods for Adaptive Shrinkage, using Empirical Bayes

ash

Adaptive Shrinkage

ash_pois

Performs adaptive shrinkage on Poisson data

ashci

Credible Interval Computation for the ash object

ashr

ashr

calc_loglik

Compute loglikelihood for data from ash fit

calc_logLR

Compute loglikelihood ratio for data from ash fit

calc_mixmean

Generic function of calculating the overall mean of the mixture

calc_mixsd

Generic function of calculating the overall standard deviation of the ...

calc_null_loglik

Compute loglikelihood for data under null that all beta are 0

calc_null_vloglik

Compute vector of loglikelihood for data under null that all beta are ...

calc_vloglik

Compute vector of loglikelihood for data from ash fit

calc_vlogLR

Compute vector of loglikelihood ratio for data from ash fit

cdf.ash

cdf method for ash object

cdf_conv

cdf_conv

cdf_post

cdf_post

comp_cdf

Generic function of computing the cdf for each component

comp_cdf_conv.normalmix

comp_cdf_conv.normalmix

comp_cdf_conv

comp_cdf_conv

comp_cdf_conv.unimix

cdf of convolution of each component of a unif mixture

comp_cdf_post

comp_cdf_post

comp_dens

Generic function of calculating the component densities of the mixture

comp_dens_conv.normalmix

comp_dens_conv.normalmix

comp_dens_conv

comp_dens_conv

comp_dens_conv.unimix

density of convolution of each component of a unif mixture

comp_mean.normalmix

comp_mean.normalmix

comp_mean

Generic function of calculating the first moment of components of the ...

comp_mean.tnormalmix

comp_mean.tnormalmix

comp_mean2

Generic function of calculating the second moment of components of the...

comp_postmean

comp_postmean

comp_postmean2

comp_postmean2

comp_postprob

comp_postprob

comp_postsd

comp_postsd

comp_sd.normalmix

comp_sd.normalmix

comp_sd

Generic function to extract the standard deviations of components of t...

comp_sd.tnormalmix

comp_sd.normalmix

compute_lfsr

Function to compute the local false sign rate

cxxMixSquarem

Brief description of function.

dens

Find density at y, a generic function

dens_conv

dens_conv

dlogf

The log-F distribution

estimate_mixprop

Estimate mixture proportions of a mixture g given noisy (error-prone) ...

gen_etruncFUN

gen_etruncFUN

get_density

Density method for ash object

get_lfdr

Return lfsr from an ash object

get_post_sample

Sample from posterior

igmix

Constructor for igmix class

lik_binom

Likelihood object for Binomial error distribution

lik_logF

Likelihood object for logF error distribution

lik_normal

Likelihood object for normal error distribution

lik_normalmix

Likelihood object for normal mixture error distribution

lik_pois

Likelihood object for Poisson error distribution

lik_t

Likelihood object for t error distribution

log_comp_dens_conv.normalmix

log_comp_dens_conv.normalmix

log_comp_dens_conv

log_comp_dens_conv

log_comp_dens_conv.unimix

log density of convolution of each component of a unif mixture

loglik_conv.default

loglik_conv.default

loglik_conv

loglik_conv

mixcdf.default

mixcdf.default

mixcdf

mixcdf

mixEM

Estimate mixture proportions of a mixture model by EM algorithm

mixIP

Estimate mixture proportions of a mixture model by Interior Point meth...

mixmean2

Generic function of calculating the overall second moment of the mixtu...

mixprop

Generic function of extracting the mixture proportions

mixSQP

Estimate mixture proportions of a mixture model using mix-SQP algorith...

mixVBEM

Estimate posterior distribution on mixture proportions of a mixture mo...

my_e2truncbeta

second moment of truncated Beta distribution

my_e2truncgamma

second moment of truncated gamma distribution

my_e2truncnorm

Expected Squared Value of Truncated Normal

my_e2trunct

my_e2trunct

my_etruncbeta

mean of truncated Beta distribution

my_etruncgamma

mean of truncated gamma distribution

my_etrunclogf

my_etrunclogf

my_etruncnorm

Expected Value of Truncated Normal

my_etrunct

my_etrunct

my_vtruncnorm

Variance of Truncated Normal

ncomp.default

ncomp.default

ncomp

ncomp

normalmix

Constructor for normalmix class

pcdf_post

pcdf_post

plogf

The log-F distribution

plot.ash

Plot method for ash object

plot_diagnostic

Diagnostic plots for ash object

pm_on_zero

Generic function to extract which components of mixture are point mass...

post_sample.normalmix

post_sample.normalmix

post_sample

post_sample

post_sample.unimix

post_sample.unimix

posterior_dist

Compute Posterior

postmean

postmean

postmean2

postmean2

postsd

postsd

print.ash

Print method for ash object

prune

prune

qval.from.lfdr

Function to compute q values from local false discovery rates

set_data

Takes raw data and sets up data object for use by ash

summary.ash

Summary method for ash object

tnormalmix

Constructor for tnormalmix class

unimix

Constructor for unimix class

vcdf_post

vcdf_post

w_mixEM

Estimate mixture proportions of a mixture model by EM algorithm (weigh...

The R package 'ashr' implements an Empirical Bayes approach for large-scale hypothesis testing and false discovery rate (FDR) estimation based on the methods proposed in M. Stephens, 2016, "False discovery rates: a new deal", <DOI:10.1093/biostatistics/kxw041>. These methods can be applied whenever two sets of summary statistics---estimated effects and standard errors---are available, just as 'qvalue' can be applied to previously computed p-values. Two main interfaces are provided: ash(), which is more user-friendly; and ash.workhorse(), which has more options and is geared toward advanced users. The ash() and ash.workhorse() also provides a flexible modeling interface that can accommodate a variety of likelihoods (e.g., normal, Poisson) and mixture priors (e.g., uniform, normal).

  • Maintainer: Peter Carbonetto
  • License: GPL (>= 3)
  • Last published: 2023-08-21