bistablehistory1.1.2 package

Cumulative History Analysis for Bistable Perception Time Series

bayes_R2

Computes R-squared using Bayesian R-squared approach.

bistablehistory-package

Cumulative History Analysis for Bistable Perception Time Series

check_fixed_history_parameter

Evaluates values for a fixed history parameter

check_normal_prior

Checks for validity of values for use as normal distribution parameter...

coef.cumhist

Extract Model Coefficients

compute_history

Computes cumulative history for the time-series

cumhist-class

Class cumhist.

evaluate_history_init

Evaluates validity of initial history values.

evaluate_history_option

Evaluates whether and how to fit a cumulative history parameter.

extract_history

Computes history for a fitted model

extract_history_parameter

Extracts a history parameter as a matrix

extract_replicate_term_to_matrix

Extract a term and replicates it randomN times for each linear model

extract_term_to_matrix

Extracts a term with one column per fixed or random-level into a matri...

fast_history_compute

Computes cumulative history

fit_cumhist

Fits cumulative history for bistable perceptual rivalry displays.

fixef

Extract the fixed-effects estimates

history_mixed_state

Extract values of used or fitted history parameter mixed_state

history_parameter

Extract values of used or fitted history parameter

history_tau

Extract values of used or fitted history parameter tau

historyef

Extract the history-effects estimates

loo.cumhist

Computes an efficient approximate leave-one-out cross-validation via l...

predict.cumhist

Computes predicted dominance phase durations using posterior predictiv...

predict_history

Computes predicted cumulative history using posterior predictive distr...

predict_samples

Computes prediction for a each sample.

preprocess_data

Preprocesses time-series data for fitting

print.cumhist

Prints out cumhist object

summary.cumhist

Summary for a cumhist object

waic.cumhist

Computes widely applicable information criterion (WAIC).

Estimates cumulative history for time-series for continuously viewed bistable perceptual rivalry displays. Computes cumulative history via a homogeneous first order differential process. I.e., it assumes exponential growth/decay of the history as a function time and perceptually dominant state, Pastukhov & Braun (2011) <doi:10.1167/11.10.12>. Supports Gamma, log normal, and normal distribution families. Provides a method to compute history directly and example of using the computation on a custom Stan code.

  • Maintainer: Alexander Pastukhov
  • License: GPL (>= 3)
  • Last published: 2023-09-13