Computes prediction for a each sample.
Computing prediction for each sample, recomputing cumulative history and uses fitted parameter values.
predict_samples( family, fixedN, randomN, lmN, istate, duration, is_used, run_start, session_tmean, irandom, fixed, tau_ind, mixed_state_ind, history_init, a, bH, bF, sigma )
family
: int, distribution family: gamma (1), lognormal(2), or normal (3).fixedN
: int, number of fixed parameters (>= 0).randomN
: int, number of random factors (>= 1).lmN
: int, number of linear models (>= 1).istate
: IntegerVector, zero-based perceptual state 0 or 1, 2 is mixed state.duration
: DoubleVector, duration of a dominance phase.is_used
: IntegerVector, whether dominance phase is used for prediction (1) or not (0).run_start
: IntegerVector, 1 whenever a new run starts.session_tmean
: DoubleVector, average dominance phase duration.irandom
: IntegerVector, zero-based index of a random effect.fixed
: NumericMatrix, matrix with fixed effect values.tau_ind
: NumericMatrix, matrix with samples of tau for each random level.mixed_state_ind
: NumericMatrix, matrix with samples of mixed_state for each random level.history_init
: DoubleVector, Initial values of history for a runa
: NumericMatrix, matrix with samples of a (intercept) for each random level.bH
: NumericMatrix, matrix with sample of bH for each linear model and random level.bF
: NumericMatrix, matrix with sample of bF for each linear model and fixed factor.sigma
: DoubleVector, samples of sigma.NumericMatrix with predicted durations for each sample.
Useful links