predict_samples function

Computes prediction for a each sample.

Computes prediction for a each sample.

Computing prediction for each sample, recomputing cumulative history and uses fitted parameter values.

predict_samples( family, fixedN, randomN, lmN, istate, duration, is_used, run_start, session_tmean, irandom, fixed, tau_ind, mixed_state_ind, history_init, a, bH, bF, sigma )

Arguments

  • family: int, distribution family: gamma (1), lognormal(2), or normal (3).
  • fixedN: int, number of fixed parameters (>= 0).
  • randomN: int, number of random factors (>= 1).
  • lmN: int, number of linear models (>= 1).
  • istate: IntegerVector, zero-based perceptual state 0 or 1, 2 is mixed state.
  • duration: DoubleVector, duration of a dominance phase.
  • is_used: IntegerVector, whether dominance phase is used for prediction (1) or not (0).
  • run_start: IntegerVector, 1 whenever a new run starts.
  • session_tmean: DoubleVector, average dominance phase duration.
  • irandom: IntegerVector, zero-based index of a random effect.
  • fixed: NumericMatrix, matrix with fixed effect values.
  • tau_ind: NumericMatrix, matrix with samples of tau for each random level.
  • mixed_state_ind: NumericMatrix, matrix with samples of mixed_state for each random level.
  • history_init: DoubleVector, Initial values of history for a run
  • a: NumericMatrix, matrix with samples of a (intercept) for each random level.
  • bH: NumericMatrix, matrix with sample of bH for each linear model and random level.
  • bF: NumericMatrix, matrix with sample of bF for each linear model and fixed factor.
  • sigma: DoubleVector, samples of sigma.

Returns

NumericMatrix with predicted durations for each sample.