Gains table & lift chart
Compute sensitivity, specificity, accuracy and KS statistics to generate the lift chart and the KS chart.
blr_gains_table(model, data = NULL) ## S3 method for class 'blr_gains_table' plot( x, title = "Lift Chart", xaxis_title = "% Population", yaxis_title = "% Cumulative 1s", diag_line_col = "red", lift_curve_col = "blue", plot_title_justify = 0.5, print_plot = TRUE, ... )
model
: An object of class glm
.data
: A tibble
or a data.frame
.x
: An object of class blr_gains_table
.title
: Plot title.xaxis_title
: X axis title.yaxis_title
: Y axis title.diag_line_col
: Diagonal line color.lift_curve_col
: Color of the lift curve.plot_title_justify
: Horizontal justification on the plot title.print_plot
: logical; if TRUE
, prints the plot else returns a plot object....
: Other inputs.A tibble.
model <- glm(honcomp ~ female + read + science, data = hsb2, family = binomial(link = 'logit')) # gains table blr_gains_table(model) # lift chart k <- blr_gains_table(model) plot(k)
Agresti, A. (2007), An Introduction to Categorical Data Analysis, Second Edition, New York: John Wiley & Sons.
Agresti, A. (2013), Categorical Data Analysis, Third Edition, New York: John Wiley & Sons.
Thomas LC (2009): Consumer Credit Models: Pricing, Profit, and Portfolio. Oxford, Oxford Uni-versity Press.
Sobehart J, Keenan S, Stein R (2000): Benchmarking Quantitative Default Risk Models: A Validation Methodology, Moody’s Investors Service.
Other model validation techniques: blr_confusion_matrix()
, blr_decile_capture_rate()
, blr_decile_lift_chart()
, blr_gini_index()
, blr_ks_chart()
, blr_lorenz_curve()
, blr_roc_curve()
, blr_test_hosmer_lemeshow()
Useful links