blorr0.3.1 package

Tools for Developing Binary Logistic Regression Models

blorr

blorr package

blr_bivariate_analysis

Bivariate analysis

blr_coll_diag

Collinearity diagnostics

blr_confusion_matrix

Confusion matrix

blr_decile_capture_rate

Event rate by decile

blr_decile_lift_chart

Decile lift chart

blr_gains_table

Gains table & lift chart

blr_gini_index

Gini index

blr_ks_chart

KS chart

blr_launch_app

Launch shiny app

blr_linktest

Model specification error

blr_lorenz_curve

Lorenz curve

blr_model_fit_stats

Model fit statistics

blr_multi_model_fit_stats

Multi model fit statistics

blr_pairs

Concordant & discordant pairs

blr_plot_c_fitted

CI Displacement C vs fitted values plot

blr_plot_c_leverage

CI Displacement C vs leverage plot

blr_plot_deviance_fitted

Deviance vs fitted values plot

blr_plot_deviance_residual

Deviance residual values

blr_plot_dfbetas_panel

DFBETAs panel

blr_plot_diag_c

CI Displacement C plot

blr_plot_diag_cbar

CI Displacement CBAR plot

blr_plot_diag_difchisq

Delta chisquare plot

blr_plot_diag_difdev

Delta deviance plot

blr_plot_diag_fit

Fitted values diagnostics plot

blr_plot_diag_influence

Influence diagnostics plot

blr_plot_diag_leverage

Leverage diagnostics plot

blr_plot_difchisq_fitted

Delta chi square vs fitted values plot

blr_plot_difchisq_leverage

Delta chi square vs leverage plot

blr_plot_difdev_fitted

Delta deviance vs fitted values plot

blr_plot_difdev_leverage

Delta deviance vs leverage plot

blr_plot_fitted_leverage

Fitted values vs leverage plot

blr_plot_leverage_fitted

Leverage vs fitted values plot

blr_plot_leverage

Leverage plot

blr_plot_pearson_residual

Residual values plot

blr_plot_residual_fitted

Residual vs fitted values plot

blr_prep_dcrate_data

Decile capture rate data

blr_prep_kschart_data

KS Chart data

blr_prep_lchart_gmean

Lift Chart data

blr_prep_lorenz_data

Lorenz curve data

blr_prep_roc_data

ROC curve data

blr_regress

Binary logistic regression

blr_residual_diagnostics

Residual diagnostics

blr_roc_curve

ROC curve

blr_rsq_adj_count

Adjusted count R2

blr_rsq_count

Count R2

blr_rsq_cox_snell

Cox Snell R2

blr_rsq_effron

Effron R2

blr_rsq_mcfadden_adj

McFadden's adjusted R2

blr_rsq_mcfadden

McFadden's R2

blr_rsq_mckelvey_zavoina

McKelvey Zavoina R2

blr_rsq_nagelkerke

Cragg-Uhler (Nagelkerke) R2

blr_segment_dist

Response distribution

blr_segment_twoway

Two way event rate

blr_segment

Event rate

blr_step_aic_backward

Stepwise AIC backward elimination

blr_step_aic_both

Stepwise AIC selection

blr_step_aic_forward

Stepwise AIC forward selection

blr_step_p_backward

Stepwise backward regression

blr_step_p_both

Stepwise regression

blr_step_p_forward

Stepwise forward regression

blr_test_hosmer_lemeshow

Hosmer lemeshow test

blr_test_lr

Likelihood ratio test

blr_woe_iv_stats

Multi variable WOE & IV

blr_woe_iv

WoE & IV

Tools designed to make it easier for beginner and intermediate users to build and validate binary logistic regression models. Includes bivariate analysis, comprehensive regression output, model fit statistics, variable selection procedures, model validation techniques and a 'shiny' app for interactive model building.

  • Maintainer: Aravind Hebbali
  • License: MIT + file LICENSE
  • Last published: 2024-11-11