Build regression model from a set of candidate predictor variables by removing predictors based on p values, in a stepwise manner until there is no variable left to remove any more.
blr_step_p_backward(model,...)## Default S3 method:blr_step_p_backward(model, prem =0.3, details =FALSE,...)## S3 method for class 'blr_step_p_backward'plot(x, model =NA, print_plot =TRUE,...)
Arguments
model: An object of class lm; the model should include all candidate predictor variables.
...: Other inputs.
prem: p value; variables with p more than prem will be removed from the model.
details: Logical; if TRUE, will print the regression result at each step.
x: An object of class blr_step_p_backward.
print_plot: logical; if TRUE, prints the plot else returns a plot object.
Returns
blr_step_p_backward returns an object of class "blr_step_p_backward". An object of class "blr_step_p_backward" is a list containing the following components:
model: model with the least AIC; an object of class glm
steps: total number of steps
removed: variables removed from the model
aic: akaike information criteria
bic: bayesian information criteria
dev: deviance
indvar: predictors
Examples
## Not run:# stepwise backward regressionmodel <- glm(honcomp ~ female + read + science + math + prog + socst, data = hsb2, family = binomial(link ='logit'))blr_step_p_backward(model)# stepwise backward regression plotmodel <- glm(honcomp ~ female + read + science + math + prog + socst, data = hsb2, family = binomial(link ='logit'))k <- blr_step_p_backward(model)plot(k)# final modelk$model
## End(Not run)
References
Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.
See Also
Other variable selection procedures: blr_step_aic_backward(), blr_step_aic_both(), blr_step_aic_forward(), blr_step_p_forward()