Build regression model from a set of candidate predictor variables by entering predictors based on chi square statistic, in a stepwise manner until there is no variable left to enter any more.
blr_step_aic_forward(model,...)## Default S3 method:blr_step_aic_forward(model, progress =FALSE, details =FALSE,...)## S3 method for class 'blr_step_aic_forward'plot(x, text_size =3, print_plot =TRUE,...)
Arguments
model: An object of class glm.
...: Other arguments.
progress: Logical; if TRUE, will display variable selection progress.
details: Logical; if TRUE, will print the regression result at each step.
x: An object of class blr_step_aic_forward.
text_size: size of the text in the plot.
print_plot: logical; if TRUE, prints the plot else returns a plot object.
Returns
blr_step_aic_forward returns an object of class "blr_step_aic_forward". An object of class "blr_step_aic_forward" is a list containing the following components:
model: model with the least AIC; an object of class glm
candidates: candidate predictor variables
steps: total number of steps
predictors: variables entered into the model
aics: akaike information criteria
bics: bayesian information criteria
devs: deviances
Examples
## Not run:model <- glm(honcomp ~ female + read + science, data = hsb2,family = binomial(link ='logit'))# selection summaryblr_step_aic_forward(model)# print details of each stepblr_step_aic_forward(model, details =TRUE)# plotplot(blr_step_aic_forward(model))# final modelk <- blr_step_aic_forward(model)k$model
## End(Not run)
References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
See Also
Other variable selection procedures: blr_step_aic_backward(), blr_step_aic_both(), blr_step_p_backward(), blr_step_p_forward()