WoE & IV
Weight of evidence and information value. Currently avialable for categorical predictors only.
blr_woe_iv(data, predictor, response, digits = 4, ...) ## S3 method for class 'blr_woe_iv' plot( x, title = NA, xaxis_title = "Levels", yaxis_title = "WoE", bar_color = "blue", line_color = "red", print_plot = TRUE, ... )
data
: A tibble
or data.frame
.predictor
: Predictor variable; column in data
.response
: Response variable; column in data
.digits
: Number of decimal digits to round off....
: Other inputs.x
: An object of class blr_segment_dist
.title
: Plot title.xaxis_title
: X axis title.yaxis_title
: Y axis title.bar_color
: Color of the bar.line_color
: Color of the horizontal line.print_plot
: logical; if TRUE
, prints the plot else returns a plot object.A tibble.
# woe and iv k <- blr_woe_iv(hsb2, female, honcomp) k # plot woe plot(k)
Siddiqi N (2006): Credit Risk Scorecards: developing and implementing intelligent credit scoring. New Jersey, Wiley.
Other bivariate analysis procedures: blr_bivariate_analysis()
, blr_segment()
, blr_segment_dist()
, blr_segment_twoway()
, blr_woe_iv_stats()
Useful links