ROC curve
Receiver operating characteristic curve (ROC) curve is used for assessing accuracy of the model classification.
blr_roc_curve( gains_table, title = "ROC Curve", xaxis_title = "1 - Specificity", yaxis_title = "Sensitivity", roc_curve_col = "blue", diag_line_col = "red", point_shape = 18, point_fill = "blue", point_color = "blue", plot_title_justify = 0.5, print_plot = TRUE )
gains_table
: An object of class blr_gains_table
.title
: Plot title.xaxis_title
: X axis title.yaxis_title
: Y axis title.roc_curve_col
: Color of the roc curve.diag_line_col
: Diagonal line color.point_shape
: Shape of the points on the roc curve.point_fill
: Fill of the points on the roc curve.point_color
: Color of the points on the roc curve.plot_title_justify
: Horizontal justification on the plot title.print_plot
: logical; if TRUE
, prints the plot else returns a plot object.model <- glm(honcomp ~ female + read + science, data = hsb2, family = binomial(link = 'logit')) k <- blr_gains_table(model) blr_roc_curve(k)
Agresti, A. (2007), An Introduction to Categorical Data Analysis, Second Edition, New York: John Wiley & Sons.
Hosmer, D. W., Jr. and Lemeshow, S. (2000), Applied Logistic Regression, 2nd Edition, New York: John Wiley & Sons.
Siddiqi N (2006): Credit Risk Scorecards: developing and implementing intelligent credit scoring. New Jersey, Wiley.
Thomas LC, Edelman DB, Crook JN (2002): Credit Scoring and Its Applications. Philadelphia, SIAM Monographs on Mathematical Modeling and Computation.
Other model validation techniques: blr_confusion_matrix()
, blr_decile_capture_rate()
, blr_decile_lift_chart()
, blr_gains_table()
, blr_gini_index()
, blr_ks_chart()
, blr_lorenz_curve()
, blr_test_hosmer_lemeshow()
Useful links