Build regression model from a set of candidate predictor variables by entering and removing predictors based on akaike information criterion, in a stepwise manner until there is no variable left to enter or remove any more.
blr_step_aic_both(model, details =FALSE,...)## S3 method for class 'blr_step_aic_both'plot(x, text_size =3,...)
Arguments
model: An object of class lm.
details: Logical; if TRUE, details of variable selection will be printed on screen.
...: Other arguments.
x: An object of class blr_step_aic_both.
text_size: size of the text in the plot.
Returns
blr_step_aic_both returns an object of class "blr_step_aic_both". An object of class "blr_step_aic_both" is a list containing the following components:
model: model with the least AIC; an object of class glm
candidates: candidate predictor variables
predictors: variables added/removed from the model
method: addition/deletion
aics: akaike information criteria
bics: bayesian information criteria
devs: deviances
steps: total number of steps
Examples
## Not run:model <- glm(y ~ ., data = stepwise)# selection summaryblr_step_aic_both(model)# print details at each stepblr_step_aic_both(model, details =TRUE)# plotplot(blr_step_aic_both(model))# final modelk <- blr_step_aic_both(model)k$model
## End(Not run)
References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
See Also
Other variable selection procedures: blr_step_aic_backward(), blr_step_aic_forward(), blr_step_p_backward(), blr_step_p_forward()