blr_step_aic_both function

Stepwise AIC selection

Stepwise AIC selection

Build regression model from a set of candidate predictor variables by entering and removing predictors based on akaike information criterion, in a stepwise manner until there is no variable left to enter or remove any more.

blr_step_aic_both(model, details = FALSE, ...) ## S3 method for class 'blr_step_aic_both' plot(x, text_size = 3, ...)

Arguments

  • model: An object of class lm.
  • details: Logical; if TRUE, details of variable selection will be printed on screen.
  • ...: Other arguments.
  • x: An object of class blr_step_aic_both.
  • text_size: size of the text in the plot.

Returns

blr_step_aic_both returns an object of class "blr_step_aic_both". An object of class "blr_step_aic_both" is a list containing the following components:

  • model: model with the least AIC; an object of class glm

  • candidates: candidate predictor variables

  • predictors: variables added/removed from the model

  • method: addition/deletion

  • aics: akaike information criteria

  • bics: bayesian information criteria

  • devs: deviances

  • steps: total number of steps

Examples

## Not run: model <- glm(y ~ ., data = stepwise) # selection summary blr_step_aic_both(model) # print details at each step blr_step_aic_both(model, details = TRUE) # plot plot(blr_step_aic_both(model)) # final model k <- blr_step_aic_both(model) k$model ## End(Not run)

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other variable selection procedures: blr_step_aic_backward(), blr_step_aic_forward(), blr_step_p_backward(), blr_step_p_forward()