fepoisson function

Poisson model fitting high-dimensional with k-way fixed effects

Poisson model fitting high-dimensional with k-way fixed effects

A wrapper for feglm with family = poisson().

fepoisson( formula = NULL, data = NULL, weights = NULL, beta_start = NULL, eta_start = NULL, control = NULL )

Arguments

  • formula: an object of class "formula": a symbolic description of the model to be fitted. formula must be of type y ~ x | k, where the second part of the formula refers to factors to be concentrated out. It is also possible to pass clustering variables to feglm

    as y ~ x | k | c.

  • data: an object of class "data.frame" containing the variables in the model. The expected input is a dataset with the variables specified in formula and a number of rows at least equal to the number of variables in the model.

  • weights: an optional string with the name of the 'prior weights' variable in data.

  • beta_start: an optional vector of starting values for the structural parameters in the linear predictor. Default is β=0\beta = 0.

  • eta_start: an optional vector of starting values for the linear predictor.

  • control: a named list of parameters for controlling the fitting process. See feglm_control for details.

Returns

A named list of class "feglm".

Examples

# check the feglm examples for the details about clustered standard errors # subset trade flows to avoid fitting time warnings during check set.seed(123) trade_2006 <- trade_panel[trade_panel$year == 2006, ] trade_2006 <- trade_2006[sample(nrow(trade_2006), 500), ] mod <- fepoisson( trade ~ log_dist + lang + cntg + clny | exp_year + imp_year, trade_2006 ) summary(mod)
  • Maintainer: Mauricio Vargas Sepulveda
  • License: Apache License (>= 2)
  • Last published: 2025-03-26