classmap1.2.6 package

Visualizing Classification Results

classmap

Draw the class map to visualize classification results.

confmat.vcr

Build a confusion matrix from the output of a function vcr.*.*.

makeFV

Constructs feature vectors from a kernel matrix.

makeKernel

Compute kernel matrix

predscor

Draws a predictions correlation plot, which visualizes the correlation...

predsplot

Make a predictions plot

qresplot

Draw a quasi residual plot of PAC versus a data feature

silplot

Draw the silhouette plot of a classification

stackedplot

Make a vertically stacked mosaic plot of class predictions.

vcr.da.newdata

Carry out discriminant analysis on new data, and prepare to visualize ...

vcr.da.train

Carry out discriminant analysis on training data, and prepare to visua...

vcr.forest.newdata

Prepare for visualization of a random forest classification on new dat...

vcr.forest.train

Prepare for visualization of a random forest classification on trainin...

vcr.knn.newdata

Carry out a k-nearest neighbor classification on new data, and prepare...

vcr.knn.train

Carry out a k-nearest neighbor classification on training data, and pr...

vcr.neural.newdata

Prepare for visualization of a neural network classification on new da...

vcr.neural.train

Prepare for visualization of a neural network classification on traini...

vcr.rpart.newdata

Prepare for visualization of an rpart classification on new data.

vcr.rpart.train

Prepare for visualization of an rpart classification on training data.

vcr.svm.newdata

Prepare for visualization of a support vector machine classification o...

vcr.svm.train

Prepare for visualization of a support vector machine classification o...

Tools to visualize the results of a classification or a regression. The graphical displays include stacked plots, silhouette plots, quasi residual plots, class maps, predictions plots, and predictions correlation plots. Implements the techniques described and illustrated in Raymaekers J., Rousseeuw P.J., Hubert M. (2022). Class maps for visualizing classification results. \emph{Technometrics}, 64(2), 151–165. \doi{10.1080/00401706.2021.1927849} (open access), Raymaekers J., Rousseeuw P.J.(2022). Silhouettes and quasi residual plots for neural nets and tree-based classifiers. \emph{Journal of Computational and Graphical Statistics}, 31(4), 1332–1343. \doi{10.1080/10618600.2022.2050249}, and Rousseeuw, P.J. (2025). Explainable Linear and Generalized Linear Models by the Predictions Plot. <doi:10.48550/arXiv.2412.16980> (open access). Examples can be found in the vignettes: "Discriminant_analysis_examples","K_nearest_neighbors_examples", "Support_vector_machine_examples", "Rpart_examples", "Random_forest_examples", "Neural_net_examples", and "predsplot_examples".

  • Maintainer: Jakob Raymaekers
  • License: GPL (>= 2)
  • Last published: 2025-07-14