CCRseqk runs regressions with potentially more covariates than observations with k clusters. See c_chmod() for the list of models supported.
CCRseqk(Y, X, k, nC =1, kap =0.1, modclass ="lm", tol =1e-06, reltol =TRUE, rndcov =NULL, report =NULL,...)
Arguments
Y: vector of dependent variable Y
X: design matrix (without intercept)
k: number of clusters
nC: first nC-1 columns in X not to cluster
kap: maximum number of parameters to estimate in each active sequential step, as a fraction of the less of total number of observations n or number of covariates p. i.e. min(n,p)
modclass: a string denoting the desired the class of model. See c_chmod for details.
tol: level of tolerance for convergence; default tol=1e-6
reltol: a logical for relative tolerance instead of level. Defaults at TRUE
rndcov: seed for randomising assignment of covariates to partitions; default NULL
report: number of iterations after which to report progress; default NULL
...: additional arguments to be passed to the model
Returns
a list of objects
mobj low dimensional model object of class lm, glm, or rq (depending on modclass)
clus cluster assignments of covariates
iter number of iterations
dev decrease in the function value at convergence
Examples
set.seed(14)#Generate dataN =1000;(bets = rep(-2:2,4)/2); p = length(bets); X = matrix(rnorm(N*p),N,p)Y = cbind(1,X)%*%matrix(c(0.5,bets),ncol =1); nC=1zg=CCRseqk(Y,X,k=5,nC=nC,kap=0.1,modclass="lm",tol=1e-6,reltol=TRUE,rndcov=NULL,report=8)(del=zg$mobj$coefficients)# delta(bets = c(del[1:nC],(del[-c(1:nC)])[zg$clus]))#construct beta