x: an object of class "numeric", "factor", "ordered" or "Surv".
ties.method: a character, the method used to handle ties. The score generating function either uses the mid-ranks ("mid-ranks", default) or, in the case of rank_trafo(), randomly broken ties ("random"). Alternatively, the average of the scores resulting from applying the score generating function to randomly broken ties are used ("average-scores"). See logrank_test() for a detailed description of the methods used in logrank_trafo().
mid.score: a character, the score assigned to observations exactly equal to the median: either 0 ("0", default), 0.5 ("0.5") or 1 ("1"); see median_test().
a: a numeric vector, the values taken as the constant a in the Conover-Salsburg scores. Defaults to 5.
j: a numeric, the value taken as the constant j in the Koziol-Nemec scores. Defaults to 1.
weight: a function where the first three arguments must correspond to time, n.risk, and n.event given below. Defaults to logrank_weight.
time: a numeric vector, the ordered distinct time points.
n.risk: a numeric vector, the number of subjects at risk at each time point specified in time.
n.event: a numeric vector, the number of events at each time point specified in time.
type: a character, one of "logrank" (default), "Gehan-Breslow", "Tarone-Ware", "Peto-Peto", "Prentice", "Prentice-Marek", "Andersen-Borgan-Gill-Keiding", "Fleming-Harrington", "Gaugler-Kim-Liao" or "Self"; see logrank_test().
rho: a numeric vector, the ρ constant when type is "Tarone-Ware", "Fleming-Harrington", "Gaugler-Kim-Liao"
or "Self"; see logrank_test(). Defaults to NULL, implying 0.5 for type = "Tarone-Ware" and 0 otherwise.
gamma: a numeric vector, the γ constant when type is "Fleming-Harrington", "Gaugler-Kim-Liao" or "Self"; see logrank_test(). Defaults to NULL, implying 0.
scores: a numeric vector or list, the scores corresponding to each level of an ordered factor. Defaults to NULL, implying 1:nlevels(x).
increment: a numeric, the score increment between the order-restricted sets of scores. A fraction greater than 0, but smaller than or equal to 1. Defaults to 0.1.
minprob: a numeric, a fraction between 0 and 0.5; see maxstat_test(). Defaults to 0.1.
maxprob: a numeric, a fraction between 0.5 and 1; see maxstat_test(). Defaults to 1 - minprob.
data: an object of class "data.frame".
numeric_trafo: a function to be applied to elements of class "numeric" in data, returning a matrix with nrow(data) rows and an arbitrary number of columns. Defaults to id_trafo.
factor_trafo: a function to be applied to elements of class "factor" in data, returning a matrix with nrow(data) rows and an arbitrary number of columns. Defaults to f_trafo.
ordered_trafo: a function to be applied to elements of class "ordered" in data, returning a matrix with nrow(data) rows and an arbitrary number of columns. Defaults to of_trafo.
surv_trafo: a function to be applied to elements of class "Surv" in data, returning a matrix with nrow(data) rows and an arbitrary number of columns. Defaults to logrank_trafo.
var_trafo: an optional named list of functions to be applied to the corresponding variables in data. Defaults to NULL.
block: an optional factor whose levels are interpreted as blocks. trafo is applied to each level of block separately. Defaults to NULL.
...: logrank_trafo(): further arguments to be passed to weight.
mcp_trafo(): factor name and contrast matrix (as matrix or character) in a tag = value format for multiple comparisons based on a single unordered factor; see mcp() in package multcomp.
Details
The utility functions documented here are used to define specialized test procedures.
id_trafo() is the identity transformation.
rank_trafo(), normal_trafo(), median_trafo(), savage_trafo(), consal_trafo() and koziol_trafo() compute rank (Wilcoxon) scores, normal (van der Waerden) scores, median (Mood-Brown) scores, Savage scores, Conover-Salsburg scores (see neuropathy) and Koziol-Nemec scores, respectively, for location problems.
klotz_trafo(), mood_trafo(), ansari_trafo() and fligner_trafo() compute Klotz scores, Mood scores, Ansari-Bradley scores and Fligner-Killeen scores, respectively, for scale problems.
logrank_trafo() computes weighted logrank scores for right-censored data, allowing for a user-defined weight function through the weight
argument (see GTSG).
f_trafo() computes dummy matrices for factors and of_trafo()
assigns scores to ordered factors. For ordered factors with two levels, the scores are normalized to the [0,1] range. zheng_trafo()
computes a finite collection of order-restricted scores for ordered factors (see jobsatisfaction, malformations and vision).
maxstat_trafo(), fmaxstat_trafo() and ofmaxstat_trafo()
compute scores for cutpoint problems (see maxstat_test()).
trafo() applies its arguments to the elements of data according to the classes of the elements. A trafo() function with modified default arguments is usually supplied to independence_test() via the xtrafo or ytrafo arguments. Fine tuning, i.e., different transformations for different variables, is possible by supplying a named list of functions to the var_trafo argument.
mcp_trafo() computes contrast matrices for factors.
Returns
A numeric vector or matrix with nrow(x) rows and an arbitrary number of columns. For trafo(), a named matrix with nrow(data) rows and an arbitrary number of columns.
Note
Starting with coin version 1.1-0, all transformation functions are now passing through missing values (i.e., NAs). Furthermore, median_trafo() and logrank_trafo() are now increasing
functions (in conformity with most other transformations in this package).
Examples
## Dummy matrix, two-sample problem (only one column)f_trafo(gl(2,3))## Dummy matrix, K-sample problem (K columns)x <- gl(3,2)f_trafo(x)## Score matrixox <- as.ordered(x)of_trafo(ox)of_trafo(ox, scores = c(1,3:4))of_trafo(ox, scores = list(s1 =1:3, s2 = c(1,3:4)))zheng_trafo(ox, increment =1/3)## Normal scoresy <- runif(6)normal_trafo(y)## All together nowtrafo(data.frame(x = x, ox = ox, y = y), numeric_trafo = normal_trafo)## The same, but allows for fine-tuningtrafo(data.frame(x = x, ox = ox, y = y), var_trafo = list(y = normal_trafo))## Transformations for maximally selected statisticsmaxstat_trafo(y)fmaxstat_trafo(x)ofmaxstat_trafo(ox)## Apply transformation blockwise (as in the Friedman test)trafo(data.frame(y =1:20), numeric_trafo = rank_trafo, block = gl(4,5))## Multiple comparisonsdta <- data.frame(x)mcp_trafo(x ="Tukey")(dta)## The same, but useful when specific contrasts are desiredK <- rbind("2 - 1"= c(-1,1,0),"3 - 1"= c(-1,0,1),"3 - 2"= c(0,-1,1))mcp_trafo(x = K)(dta)