binomial_metrics function

Select metrics for binomial evaluation

Select metrics for binomial evaluation

lifecycle::badge("experimental")

Enable/disable metrics for binomial evaluation. Can be supplied to the metrics argument in many of the cvms functions.

Note: Some functions may have slightly different defaults than the ones supplied here.

binomial_metrics( all = NULL, balanced_accuracy = NULL, accuracy = NULL, f1 = NULL, sensitivity = NULL, specificity = NULL, pos_pred_value = NULL, neg_pred_value = NULL, auc = NULL, lower_ci = NULL, upper_ci = NULL, kappa = NULL, mcc = NULL, detection_rate = NULL, detection_prevalence = NULL, prevalence = NULL, false_neg_rate = NULL, false_pos_rate = NULL, false_discovery_rate = NULL, false_omission_rate = NULL, threat_score = NULL, aic = NULL, aicc = NULL, bic = NULL )

Arguments

  • all: Enable/disable all arguments at once. (Logical)

    Specifying other metrics will overwrite this, why you can use (all = FALSE, accuracy = TRUE) to get only the Accuracy metric.

  • balanced_accuracy: Balanced Accuracy (Default: TRUE)

  • accuracy: Accuracy (Default: FALSE)

  • f1: F1 (Default: TRUE)

  • sensitivity: Sensitivity (Default: TRUE)

  • specificity: Specificity (Default: TRUE)

  • pos_pred_value: Pos Pred Value (Default: TRUE)

  • neg_pred_value: Neg Pred Value (Default: TRUE)

  • auc: AUC (Default: TRUE)

  • lower_ci: Lower CI (Default: TRUE)

  • upper_ci: Upper CI (Default: TRUE)

  • kappa: Kappa (Default: TRUE)

  • mcc: MCC (Default: TRUE)

  • detection_rate: Detection Rate (Default: TRUE)

  • detection_prevalence: Detection Prevalence (Default: TRUE)

  • prevalence: Prevalence (Default: TRUE)

  • false_neg_rate: False Neg Rate (Default: FALSE)

  • false_pos_rate: False Pos Rate (Default: FALSE)

  • false_discovery_rate: False Discovery Rate (Default: FALSE)

  • false_omission_rate: False Omission Rate (Default: FALSE)

  • threat_score: Threat Score (Default: FALSE)

  • aic: AIC. (Default: FALSE)

  • aicc: AICc. (Default: FALSE)

  • bic: BIC. (Default: FALSE)

Examples

# Attach packages library(cvms) # Enable only Balanced Accuracy binomial_metrics(all = FALSE, balanced_accuracy = TRUE) # Enable all but Balanced Accuracy binomial_metrics(all = TRUE, balanced_accuracy = FALSE) # Disable Balanced Accuracy binomial_metrics(balanced_accuracy = FALSE)

See Also

Other evaluation functions: confusion_matrix(), evaluate(), evaluate_residuals(), gaussian_metrics(), multinomial_metrics()

Author(s)

Ludvig Renbo Olsen, r-pkgs@ludvigolsen.dk

  • Maintainer: Ludvig Renbo Olsen
  • License: MIT + file LICENSE
  • Last published: 2025-03-07