Select metrics for binomial evaluation
lifecycle::badge("experimental")
Enable/disable metrics for binomial evaluation. Can be supplied to the metrics
argument in many of the cvms
functions.
Note: Some functions may have slightly different defaults than the ones supplied here.
binomial_metrics( all = NULL, balanced_accuracy = NULL, accuracy = NULL, f1 = NULL, sensitivity = NULL, specificity = NULL, pos_pred_value = NULL, neg_pred_value = NULL, auc = NULL, lower_ci = NULL, upper_ci = NULL, kappa = NULL, mcc = NULL, detection_rate = NULL, detection_prevalence = NULL, prevalence = NULL, false_neg_rate = NULL, false_pos_rate = NULL, false_discovery_rate = NULL, false_omission_rate = NULL, threat_score = NULL, aic = NULL, aicc = NULL, bic = NULL )
all
: Enable/disable all arguments at once. (Logical)
Specifying other metrics will overwrite this, why you can use (all = FALSE, accuracy = TRUE
) to get only the Accuracy metric.
balanced_accuracy
: Balanced Accuracy
(Default: TRUE)
accuracy
: Accuracy
(Default: FALSE)
f1
: F1
(Default: TRUE)
sensitivity
: Sensitivity
(Default: TRUE)
specificity
: Specificity
(Default: TRUE)
pos_pred_value
: Pos Pred Value
(Default: TRUE)
neg_pred_value
: Neg Pred Value
(Default: TRUE)
auc
: AUC
(Default: TRUE)
lower_ci
: Lower CI
(Default: TRUE)
upper_ci
: Upper CI
(Default: TRUE)
kappa
: Kappa
(Default: TRUE)
mcc
: MCC
(Default: TRUE)
detection_rate
: Detection Rate
(Default: TRUE)
detection_prevalence
: Detection Prevalence
(Default: TRUE)
prevalence
: Prevalence
(Default: TRUE)
false_neg_rate
: False Neg Rate
(Default: FALSE)
false_pos_rate
: False Pos Rate
(Default: FALSE)
false_discovery_rate
: False Discovery Rate
(Default: FALSE)
false_omission_rate
: False Omission Rate
(Default: FALSE)
threat_score
: Threat Score
(Default: FALSE)
aic
: AIC. (Default: FALSE)
aicc
: AICc. (Default: FALSE)
bic
: BIC. (Default: FALSE)
# Attach packages library(cvms) # Enable only Balanced Accuracy binomial_metrics(all = FALSE, balanced_accuracy = TRUE) # Enable all but Balanced Accuracy binomial_metrics(all = TRUE, balanced_accuracy = FALSE) # Disable Balanced Accuracy binomial_metrics(balanced_accuracy = FALSE)
Other evaluation functions: confusion_matrix()
, evaluate()
, evaluate_residuals()
, gaussian_metrics()
, multinomial_metrics()
Ludvig Renbo Olsen, r-pkgs@ludvigolsen.dk