cvms1.6.2 package

Cross-Validation for Model Selection

baseline_binomial

Create baseline evaluations for binary classification

baseline_gaussian

Create baseline evaluations for regression models

baseline_multinomial

Create baseline evaluations

baseline

Create baseline evaluations

binomial_metrics

Select metrics for binomial evaluation

combine_predictors

Generate model formulas by combining predictors

confusion_matrix

Create a confusion matrix

cross_validate_fn

Cross-validate custom model functions for model selection

cross_validate

Cross-validate regression models for model selection

cvms-package

cvms: A package for cross-validating regression and classification mod...

evaluate_residuals

Evaluate residuals from a regression task

evaluate

Evaluate your model's performance

font

Create a list of font settings for plots

gaussian_metrics

Select metrics for Gaussian evaluation

model_functions

Examples of model_fn functions

most_challenging

Find the data points that were hardest to predict

multiclass_probability_tibble

Generate a multiclass probability tibble

select_metrics

Select columns with evaluation metrics and model definitions

multinomial_metrics

Select metrics for multinomial evaluation

plot_confusion_matrix

Plot a confusion matrix

plot_metric_density

Density plot for a metric

plot_probabilities_ecdf

Plot ECDF for the predicted probabilities

plot_probabilities

Plot predicted probabilities

predict_functions

Examples of predict_fn functions

preprocess_functions

Examples of preprocess_fn functions

process_info_binomial

A set of process information object constructors

reconstruct_formulas

Reconstruct model formulas from results tibbles

render_toc

Render Table of Contents

select_definitions

Select model definition columns

simplify_formula

Simplify formula with inline functions

sum_tile_settings

Create a list of settings for the sum tiles in plot_confusion_matrix()

summarize_metrics

Summarize metrics with common descriptors

update_hyperparameters

Check and update hyperparameters

validate_fn

Validate a custom model function on a test set

validate

Validate regression models on a test set

Cross-validate one or multiple regression and classification models and get relevant evaluation metrics in a tidy format. Validate the best model on a test set and compare it to a baseline evaluation. Alternatively, evaluate predictions from an external model. Currently supports regression and classification (binary and multiclass). Described in chp. 5 of Jeyaraman, B. P., Olsen, L. R., & Wambugu M. (2019, ISBN: 9781838550134).

  • Maintainer: Ludvig Renbo Olsen
  • License: MIT + file LICENSE
  • Last published: 2024-07-31