Select metrics for multinomial evaluation
lifecycle::badge("experimental")
Enable/disable metrics for multinomial evaluation. Can be supplied to the metrics
argument in many of the cvms
functions.
Note: Some functions may have slightly different defaults than the ones supplied here.
multinomial_metrics( all = NULL, overall_accuracy = NULL, balanced_accuracy = NULL, w_balanced_accuracy = NULL, accuracy = NULL, w_accuracy = NULL, f1 = NULL, w_f1 = NULL, sensitivity = NULL, w_sensitivity = NULL, specificity = NULL, w_specificity = NULL, pos_pred_value = NULL, w_pos_pred_value = NULL, neg_pred_value = NULL, w_neg_pred_value = NULL, auc = NULL, kappa = NULL, w_kappa = NULL, mcc = NULL, detection_rate = NULL, w_detection_rate = NULL, detection_prevalence = NULL, w_detection_prevalence = NULL, prevalence = NULL, w_prevalence = NULL, false_neg_rate = NULL, w_false_neg_rate = NULL, false_pos_rate = NULL, w_false_pos_rate = NULL, false_discovery_rate = NULL, w_false_discovery_rate = NULL, false_omission_rate = NULL, w_false_omission_rate = NULL, threat_score = NULL, w_threat_score = NULL, aic = NULL, aicc = NULL, bic = NULL )
all
: Enable/disable all arguments at once. (Logical)
Specifying other metrics will overwrite this, why you can use (all = FALSE, accuracy = TRUE
) to get only the Accuracy metric.
overall_accuracy
: Overall Accuracy
(Default: TRUE)
balanced_accuracy
: Macro Balanced Accuracy
(Default: TRUE)
w_balanced_accuracy
: Weighted Balanced Accuracy
(Default: FALSE)
accuracy
: Accuracy
(Default: FALSE)
w_accuracy
: Weighted Accuracy
(Default: FALSE)
f1
: F1
(Default: TRUE)
w_f1
: Weighted F1
(Default: FALSE)
sensitivity
: Sensitivity
(Default: TRUE)
w_sensitivity
: Weighted Sensitivity
(Default: FALSE)
specificity
: Specificity
(Default: TRUE)
w_specificity
: Weighted Specificity
(Default: FALSE)
pos_pred_value
: Pos Pred Value
(Default: TRUE)
w_pos_pred_value
: Weighted Pos Pred Value
(Default: FALSE)
neg_pred_value
: Neg Pred Value
(Default: TRUE)
w_neg_pred_value
: Weighted Neg Pred Value
(Default: FALSE)
auc
: AUC
(Default: FALSE)
kappa
: Kappa
(Default: TRUE)
w_kappa
: Weighted Kappa
(Default: FALSE)
mcc
: MCC
(Default: TRUE)
Multiclass Matthews Correlation Coefficient.
detection_rate
: Detection Rate
(Default: TRUE)
w_detection_rate
: Weighted Detection Rate
(Default: FALSE)
detection_prevalence
: Detection Prevalence
(Default: TRUE)
w_detection_prevalence
: Weighted Detection Prevalence
(Default: FALSE)
prevalence
: Prevalence
(Default: TRUE)
w_prevalence
: Weighted Prevalence
(Default: FALSE)
false_neg_rate
: False Neg Rate
(Default: FALSE)
w_false_neg_rate
: Weighted False Neg Rate
(Default: FALSE)
false_pos_rate
: False Pos Rate
(Default: FALSE)
w_false_pos_rate
: Weighted False Pos Rate
(Default: FALSE)
false_discovery_rate
: False Discovery Rate
(Default: FALSE)
w_false_discovery_rate
: Weighted False Discovery Rate
(Default: FALSE)
false_omission_rate
: False Omission Rate
(Default: FALSE)
w_false_omission_rate
: Weighted False Omission Rate
(Default: FALSE)
threat_score
: Threat Score
(Default: FALSE)
w_threat_score
: Weighted Threat Score
(Default: FALSE)
aic
: AIC. (Default: FALSE)
aicc
: AICc. (Default: FALSE)
bic
: BIC. (Default: FALSE)
# Attach packages library(cvms) # Enable only Balanced Accuracy multinomial_metrics(all = FALSE, balanced_accuracy = TRUE) # Enable all but Balanced Accuracy multinomial_metrics(all = TRUE, balanced_accuracy = FALSE) # Disable Balanced Accuracy multinomial_metrics(balanced_accuracy = FALSE)
Other evaluation functions: binomial_metrics()
, confusion_matrix()
, evaluate()
, evaluate_residuals()
, gaussian_metrics()
Ludvig Renbo Olsen, r-pkgs@ludvigolsen.dk