Build Dirichlet Process Objects for Bayesian Modelling
Create a Hierarchical Dirichlet Mixture of Beta Distributions
Create a Hierarchical Dirichlet Mixture of semi-conjugate Multivariate...
Create a Dirichlet mixture of multivariate normal distributions.
Create a Dirichlet mixture of multivariate normal distributions with s...
Dirichlet process mixture of the Beta distribution.
Dirichlet process mixture of Beta distributions with a Uniform Pareto ...
Create a Dirichlet Process object
Create a Dirichlet Mixture of Exponentials
Create a Dirichlet Mixture of Gaussians
Create a Dirichlet Mixture of the Gaussian Distribution with fixed var...
Create a Beta mixture with zeros at the boundaries.
Create a Beta mixing distribution.
Add burn-in to a dirichletprocess object
Change the observations of fitted Dirichlet Process.
Update the component of the Dirichlet process
Predict the cluster labels of some new data.
Update the cluster parameters of the Dirichlet process.
Diagnostic plots for dirichletprocess objects
Create a generic Dirichlet process hidden Markov Model
A flexible package for fitting Bayesian non-parametric models.
Create a Dirichlet Mixture of the Weibull distribution
Create a Exponential mixing distribution
Fit a Hidden Markov Dirichlet Process Model
Fit the Dirichlet process object
Create a Gaussian Mixing Distribution with fixed variance.
Create a Normal mixing distribution
Update the parameters of the hierarchical Dirichlet process object.
Create a Mixing Object for a hierarchical Beta Dirichlet process objec...
Create a Mixing Object for a hierarchical semi-conjugate Multivariate ...
Initialise a Dirichlet process object
Mixing Distribution Likelihood
The likelihood of the Dirichlet process object
The Likelihood function of a Dirichlet process object.
Create a mixing distribution object
Create a multivariate normal mixing distribution with semi conjugate p...
Create a multivariate normal mixing distribution
Calculate the parameters that maximise the penalised likelihood.
Plot the Dirichlet process object
Generate the posterior clusters of a Dirichlet Process
Draw from the posterior distribution
Calculate the posterior mean and quantiles from a Dirichlet process ob...
Generate the posterior function of the Dirichlet function
Calculate the posterior parameters for a conjugate prior.
Calculate how well the prior predicts the data.
Print the Dirichlet process object
Draw prior clusters and weights from the Dirichlet process
Calculate the prior density of a mixing distribution
Draw from the prior distribution
Generate the prior function of the Dirichlet process
Update the prior parameters of a mixing distribution
The Stick Breaking representation of the Dirichlet process.
Identifies the correct clusters labels, in any dimension, when cluster...
Update the Dirichlet process concentration parameter.
Update the and parameter of a hidden Markov Dirichlet...
Create a Weibull mixing distribution.
Generate a weighted function.
Perform nonparametric Bayesian analysis using Dirichlet processes without the need to program the inference algorithms. Utilise included pre-built models or specify custom models and allow the 'dirichletprocess' package to handle the Markov chain Monte Carlo sampling. Our Dirichlet process objects can act as building blocks for a variety of statistical models including and not limited to: density estimation, clustering and prior distributions in hierarchical models. See Teh, Y. W. (2011) <https://www.stats.ox.ac.uk/~teh/research/npbayes/Teh2010a.pdf>, among many other sources.
Useful links