Computes linear functions (i.e. weighted sums) of the estimated regression parameters. Can also test the hypothesis, that such a function is equal to a specific value.
esticon(obj, L, beta0, conf.int =TRUE, level =0.95, joint.test =FALSE,...)## S3 method for class 'esticon_class'coef(object,...)## S3 method for class 'esticon_class'summary(object,...)## S3 method for class 'esticon_class'confint(object, parm, level =0.95,...)## S3 method for class 'esticon_class'vcov(object,...)
Arguments
obj: Regression object (of type lm, glm, lme, geeglm).
L: Matrix (or vector) specifying linear functions of the regression parameters (one linear function per row). The number of columns must match the number of fitted regression parameters in the model. See 'details' below.
beta0: A vector of numbers
conf.int: TRUE
level: The confidence level
joint.test: Logical value. If TRUE a 'joint' Wald test for the hypothesis L beta = beta0 is made. Default is that the 'row-wise' tests are made, i.e. (L beta)i=beta0i. If joint.test is TRUE, then no confidence interval etc. is calculated.
...: Additional arguments; currently not used.
object: An esticon_class object.
parm: a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.
Returns
Returns a matrix with one row per linear function. Columns contain estimated coefficients, standard errors, t values, degrees of freedom, two-sided p-values, and the lower and upper endpoints of the 1-alpha confidence intervals.
Details
Let the estimated parameters of the model be
β1,β2,…,βp
A linear function of the estimates is of the form
l=λ1β1+λ2β2+⋯+λpβp
where λ1,λ2,…,λp is specified by the user.
The esticon function calculates l, its standard error and by default also a 95 pct confidence interval. It is sometimes of interest to test the hypothesis H0:l=β0 for some value β0
given by the user. A test is provided for the hypothesis c("H0:\n", "l=0") but other values of β0 can be specified.
In general, one can specify r such linear functions at one time by specifying L to be an r×p matrix where each row consists of p numbers λ1,λ2,…,λp. Default is then that β0 is a p vector of 0s but other values can be given.
It is possible to test simultaneously that all specified linear functions are equal to the corresponding values in β0.
For computing contrasts among levels of a single factor, 'contrast.lm' may be more convenient.
Examples
data(iris)lm1 <- lm(Sepal.Length ~ Sepal.Width + Species + Sepal.Width : Species, data=iris)## Note that the setosa parameters are set to zerocoef(lm1)## Estimate the intercept for versicolorlambda1 <- c(1,0,1,0,0,0)esticon(lm1, L=lambda1)## Estimate the difference between versicolor and virgica intercept## and test if the difference is 1lambda2 <- c(0,1,-1,0,0,0)esticon(lm1, L=lambda2, beta0=1)## Do both estimates at one timeesticon(lm1, L=rbind(lambda1, lambda2), beta0=c(0,1))## Make a combined test for that the difference between versicolor and virgica intercept## and difference between versicolor and virginica slope is zero:lambda3 <- c(0,0,0,0,1,-1)esticon(lm1, L=rbind(lambda2, lambda3), joint.test=TRUE)# Example using esticon on coxph objects (thanks to Alessandro A. Leidi).# Using dataset 'veteran' in the survival package# from the Veterans' Administration Lung Cancer studyif(require(survival)){data(veteran)sapply(veteran, class)levels(veteran$celltype)attach(veteran)veteran.s <- Surv(time, status)coxmod <- coxph(veteran.s ~ age + celltype + trt, method='breslow')summary(coxmod)# compare a subject 50 years old with celltype 1# to a subject 70 years old with celltype 2# both subjects on the same treatmentAvB <- c(-20,-1,0,0,0)# compare a subject 40 years old with celltype 2 on treat=0# to a subject 35 years old with celltype 3 on treat=1CvB <- c(5,1,-1,0,-1)est <- esticon(coxmod, L=rbind(AvB, CvB))est
##exp(est[, c(2, 7, 8)])}