Compute linear estimates, i.e. L %*% beta for a range of models. One example of linear estimates is population means (also known as LSMEANS).
linest(object, L =NULL, level =0.95,...)## S3 method for class 'linest_class'confint(object, parm, level =0.95,...)## S3 method for class 'linest_class'coef(object,...)## S3 method for class 'linest_class'summary(object,...)
Arguments
object: Model object
L: Either NULL or a matrix with p columns where p is the number of parameters in the systematic effects in the model. If NULL then L is taken to be the p times p identity matrix
level: The level of the (asymptotic) confidence interval.
...: Additional arguments; currently not used.
parm: Specification of the parameters estimates for which confidence intervals are to be calculated.
confint: Should confidence interval appear in output.
Returns
A dataframe with results from computing the contrasts.
Examples
## Make balanced datasetdat.bal <- expand.grid(list(AA=factor(1:2), BB=factor(1:3), CC=factor(1:3)))dat.bal$y <- rnorm(nrow(dat.bal))## Make unbalanced dataset# 'BB' is nested within 'CC' so BB=1 is only found when CC=1# and BB=2,3 are found in each CC=2,3,4dat.nst <- dat.bal
dat.nst$CC <-factor(c(1,1,2,2,2,2,1,1,3,3,3,3,1,1,4,4,4,4))mod.bal <- lm(y ~ AA + BB * CC, data=dat.bal)mod.nst <- lm(y ~ AA + BB : CC, data=dat.nst)L <- LE_matrix(mod.nst, effect=c("BB","CC"))linest( mod.nst, L )