Tunes 2D event detection using labeled data
This function finds best parameters for 2D event detection using labeled data.
tune_cpdbee_2D( x, cl, alpha_min = 0.95, alpha_max = 0.98, alpha_step = 0.01, epsilon_min = 2, epsilon_max = 12, epsilon_step = 2, minPts_min = 4, minPts_max = 12, minPts_step = 2 )
x
: The data in an mxn matrix or dataframe.cl
: The actual locations of the events.alpha_min
: The minimum threshold value.alpha_max
: The maximum threshold value.alpha_step
: The incremental step size for alpha.epsilon_min
: The minimum epsilon value for DBSCAN clustering.epsilon_max
: The maximum epsilon value for DBSCAN clustering.epsilon_step
: The incremental step size for epsilon for DBSCAN clustering.minPts_min
: The minimum minPts value for for DBSCAN clustering.minPts_max
: The maximum minPts value for for DBSCAN clustering.minPts_step
: The incremental step size for minPts for DBSCAN clustering.A list with following components - best
: The best threshold, epsilon and MinPts for 2D event detection and the associated Jaccard Index.
all
: All parameter values used and the associated Jaccard Index values.## Not run: out <- gen_stream(1, sd=15) zz <- as.matrix(out$data) clst <- get_clusters(zz, filename = NULL, thres = 0.95, vis = TRUE, epsilon = 5, miniPts = 10, rolling = FALSE) clst_loc <- clst$data[ ,1:2] out <- tune_cpdbee_2D(zz, clst_loc) out$best ## End(Not run)