tune_cpdbee_2D function

Tunes 2D event detection using labeled data

Tunes 2D event detection using labeled data

This function finds best parameters for 2D event detection using labeled data.

tune_cpdbee_2D( x, cl, alpha_min = 0.95, alpha_max = 0.98, alpha_step = 0.01, epsilon_min = 2, epsilon_max = 12, epsilon_step = 2, minPts_min = 4, minPts_max = 12, minPts_step = 2 )

Arguments

  • x: The data in an mxn matrix or dataframe.
  • cl: The actual locations of the events.
  • alpha_min: The minimum threshold value.
  • alpha_max: The maximum threshold value.
  • alpha_step: The incremental step size for alpha.
  • epsilon_min: The minimum epsilon value for DBSCAN clustering.
  • epsilon_max: The maximum epsilon value for DBSCAN clustering.
  • epsilon_step: The incremental step size for epsilon for DBSCAN clustering.
  • minPts_min: The minimum minPts value for for DBSCAN clustering.
  • minPts_max: The maximum minPts value for for DBSCAN clustering.
  • minPts_step: The incremental step size for minPts for DBSCAN clustering.

Returns

A list with following components - best: The best threshold, epsilon and MinPts for 2D event detection and the associated Jaccard Index.

  • all: All parameter values used and the associated Jaccard Index values.

Examples

## Not run: out <- gen_stream(1, sd=15) zz <- as.matrix(out$data) clst <- get_clusters(zz, filename = NULL, thres = 0.95, vis = TRUE, epsilon = 5, miniPts = 10, rolling = FALSE) clst_loc <- clst$data[ ,1:2] out <- tune_cpdbee_2D(zz, clst_loc) out$best ## End(Not run)