CalcR2CvCorrected function

Corrected integration value

Corrected integration value

Calculates the Young correction for integration, using bootstrap resampling Warning: CalcEigenVar is strongly preferred and should probably be used in place of this function..

CalcR2CvCorrected(ind.data, ...) ## Default S3 method: CalcR2CvCorrected( ind.data, cv.level = 0.06, iterations = 1000, parallel = FALSE, ... ) ## S3 method for class 'lm' CalcR2CvCorrected(ind.data, cv.level = 0.06, iterations = 1000, ...)

Arguments

  • ind.data: Matrix of individual measurments, or adjusted linear model
  • ...: additional arguments passed to other methods
  • cv.level: Coefficient of variation level chosen for integration index adjustment in linear model. Defaults to 0.06.
  • iterations: Number of resamples to take
  • parallel: if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Returns

List with adjusted integration indexes, fitted models and simulated distributions of integration indexes and mean coefficient of variation.

Examples

## Not run: integration.dist = CalcR2CvCorrected(iris[,1:4]) #adjusted values integration.dist[[1]] #ploting models library(ggplot2) ggplot(integration.dist$dist, aes(r2, mean_cv)) + geom_point() + geom_smooth(method = 'lm', color= 'black') + theme_bw() ggplot(integration.dist$dist, aes(eVals_cv, mean_cv)) + geom_point() + geom_smooth(method = 'lm', color= 'black') + theme_bw() ## End(Not run)

References

Young, N. M., Wagner, G. P., and Hallgrimsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3400-5. doi:10.1073/pnas.0911856107

See Also

MeanMatrixStatistics, CalcR2

Author(s)

Diogo Melo, Guilherme Garcia

  • Maintainer: Diogo Melo
  • License: MIT + file LICENSE
  • Last published: 2023-12-05

Useful links