Calculates covariance matrix correlation via Krzanowski Correlation
KrzCor(cov.x, cov.y,...)## Default S3 method:KrzCor(cov.x, cov.y, ret.dim =NULL,...)## S3 method for class 'list'KrzCor( cov.x, cov.y =NULL, ret.dim =NULL,repeat.vector =NULL, parallel =FALSE,...)## S3 method for class 'mcmc_sample'KrzCor(cov.x, cov.y, ret.dim =NULL, parallel =FALSE,...)
Arguments
cov.x: Single covariance matrix or list of covariance matrices. If single matrix is supplied, it is compared to cov.y. If list is supplied and no cov.y is suplied, all matrices are compared to each other. If cov.y is supplied, all matrices in list are compared to it.
cov.y: First argument is compared to cov.y. Optional if cov.x is a list.
...: additional arguments passed to other methods
ret.dim: number of retained dimensions in the comparison, default for nxn matrix is n/2-1
repeat.vector: Vector of repeatabilities for correlation correction.
parallel: if TRUE and a list is passed, computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.
Returns
If cov.x and cov.y are passed, returns Krzanowski correlation
If cov.x is a list and cov.y is passed, same as above, but for all matrices in cov.x.
If only a list is passed to cov.x, a matrix of Krzanowski correlation values. If repeat.vector is passed, comparison matrix is corrected above diagonal and repeatabilities returned in diagonal.
Examples
c1 <- RandomMatrix(10,1,1,10)c2 <- RandomMatrix(10,1,1,10)c3 <- RandomMatrix(10,1,1,10)KrzCor(c1, c2)KrzCor(list(c1, c2, c3))reps <- unlist(lapply(list(c1, c2, c3), MonteCarloRep,10, KrzCor, iterations =10))KrzCor(list(c1, c2, c3),repeat.vector = reps)c4 <- RandomMatrix(10)KrzCor(list(c1, c2, c3), c4)## Not run:#Multiple threads can be used with some foreach backend library, like doMC or doParallellibrary(doMC)registerDoMC(cores =2)KrzCor(list(c1, c2, c3), parallel =TRUE)## End(Not run)
References
Krzanowski, W. J. (1979). Between-Groups Comparison of Principal Components. Journal of the American Statistical Association, 74(367), 703. doi:10.2307/2286995