Parametric repeatabilities with covariance or correlation matrices
Parametric repeatabilities with covariance or correlation matrices
Using a multivariate normal model, random populations are generated using the suplied covariance matrix. A statistic is calculated on the random population and compared to the statistic calculated on the original matrix.
...: Aditional arguments passed to ComparisonFunc.
iterations: Number of random populations.
correlation: If TRUE, correlation matrix is used, else covariance matrix. MantelCor and MatrixCor should always uses correlation matrix.
parallel: If is TRUE and list is passed, computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.
Returns
returns the mean repeatability, or mean value of comparisons from samples to original statistic.
Details
Since this function uses multivariate normal model to generate populations, only covariance matrices should be used, even when computing repeatabilities for covariances matrices.
Examples
cov.matrix <- RandomMatrix(5,1,1,10)MonteCarloRep(cov.matrix, sample.size =30, RandomSkewers, iterations =20)MonteCarloRep(cov.matrix, sample.size =30, RandomSkewers, num.vectors =100, iterations =20, correlation =TRUE)MonteCarloRep(cov.matrix, sample.size =30, MatrixCor, correlation =TRUE)MonteCarloRep(cov.matrix, sample.size =30, KrzCor, iterations =20)MonteCarloRep(cov.matrix, sample.size =30, KrzCor, correlation =TRUE)#Creating repeatability vector for a list of matricesmat.list <- RandomMatrix(5,3,1,10)laply(mat.list, MonteCarloRep,30, KrzCor, correlation =TRUE)## Not run:#Multiple threads can be used with some foreach backend library, like doMC or doParallellibrary(doMC)registerDoMC(cores =2)MonteCarloRep(cov.matrix,30, RandomSkewers, iterations =100, parallel =TRUE)## End(Not run)