Parametric population samples with covariance or correlation matrices
Using a multivariate normal model, random populations are generated using the supplied covariance matrix. A statistic is calculated on the random population and compared to the statistic calculated on the original matrix.
MonteCarloStat( cov.matrix, sample.size, iterations, ComparisonFunc, StatFunc, parallel = FALSE )
cov.matrix
: Covariance matrix.sample.size
: Size of the random populationsiterations
: Number of random populationsComparisonFunc
: Comparison functions for the calculated statisticStatFunc
: Function for calculating the statisticparallel
: if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.returns the mean repeatability, or mean value of comparisons from samples to original statistic.
Since this function uses multivariate normal model to generate populations, only covariance matrices should be used.
cov.matrix <- RandomMatrix(5, 1, 1, 10) MonteCarloStat(cov.matrix, sample.size = 30, iterations = 50, ComparisonFunc = function(x, y) PCAsimilarity(x, y)[1], StatFunc = cov) #Calculating R2 confidence intervals r2.dist <- MonteCarloR2(RandomMatrix(10, 1, 1, 10), 30) quantile(r2.dist) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel ##Windows: #cl <- makeCluster(2) #registerDoParallel(cl) ##Mac and Linux: library(doParallel) registerDoParallel(cores = 2) MonteCarloStat(cov.matrix, sample.size = 30, iterations = 100, ComparisonFunc = function(x, y) KrzCor(x, y)[1], StatFunc = cov, parallel = TRUE) ## End(Not run)
BootstrapRep
, AlphaRep
Diogo Melo, Guilherme Garcia
Useful links