This function projects a given covariance matrix into the basis provided by an eigentensor decomposition.
ProjectMatrix(matrix, etd)
Arguments
matrix: A symmetric covariance matrix for k traits
etd: Eigentensor decomposition of m covariance matrices for k traits (obtained from EigenTensorDecomposition)
Returns
Vector of scores of given covariance matrix onto eigentensor basis.
Examples
# this function is useful for projecting posterior samples for a set of # covariance matrices onto the eigentensor decomposition done # on their estimated meansdata(dentus)dentus.models <- dlply(dentus, .(species), lm, formula = cbind(humerus, ulna, femur, tibia)~1)dentus.matrices <- llply(dentus.models, BayesianCalculateMatrix, samples =100)dentus.post.vcv <- laply(dentus.matrices,function(L) L $ Ps)dentus.post.vcv <- aperm(dentus.post.vcv, c(3,4,1,2))dentus.mean.vcv <- aaply(dentus.post.vcv,3, MeanMatrix)dentus.mean.vcv <- aperm(dentus.mean.vcv, c(2,3,1))dentus.mean.etd <- EigenTensorDecomposition(dentus.mean.vcv)dentus.mean.proj <- data.frame('species'= LETTERS [1:5], dentus.mean.etd $ projection)dentus.post.proj <- adply(dentus.post.vcv, c(3,4), ProjectMatrix, etd = dentus.mean.etd)colnames(dentus.post.proj)[1:2]<- c('species','sample')levels(dentus.post.proj $ species)<- LETTERS[1:5]require(ggplot2)ggplot()+ geom_point(aes(x = ET1, y = ET2, color = species), data = dentus.mean.proj, shape ='+', size =8)+ geom_point(aes(x = ET1, y = ET2, color = species), data = dentus.post.proj, shape ='+', size =3)+ theme_bw()
References
Basser P. J., Pajevic S. 2007. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing. 87:220-236.
Hine E., Chenoweth S. F., Rundle H. D., Blows M. W. 2009. Characterizing the evolution of genetic variance using genetic covariance tensors. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 364:1567-78.