Compare matrices via Selection Response Decomposition
Compare matrices via Selection Response Decomposition
Based on Random Skewers technique, selection response vectors are expanded in direct and indirect components by trait and compared via vector correlations.
SRD(cov.x, cov.y,...)## Default S3 method:SRD(cov.x, cov.y, iterations =1000,...)## S3 method for class 'list'SRD(cov.x, cov.y =NULL, iterations =1000, parallel =FALSE,...)## S3 method for class 'SRD'plot(x, matrix.label ="",...)
Arguments
cov.x: Covariance matrix being compared. cov.x can be a matrix or a list.
cov.y: Covariance matrix being compared. Ignored if cov.x is a list.
...: additional parameters passed to other methods
iterations: Number of random vectors used in comparison
parallel: if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.
x: Output from SRD function, used in plotting
matrix.label: Plot label
Returns
List of SRD scores means, confidence intervals, standard deviations, centered means e centered standard deviations
pc1 scored along the pc1 of the mean/SD correlation matrix
model List of linear model results from mean/SD correlation. Quantiles, interval and divergent traits
Details
Output can be plotted using PlotSRD function
Note
If input is a list, output is a symmetric list array with pairwise comparisons.
Examples
cov.matrix.1<- cov(matrix(rnorm(30*10),30,10))cov.matrix.2<- cov(matrix(rnorm(30*10),30,10))colnames(cov.matrix.1)<- colnames(cov.matrix.2)<- sample(letters,10)rownames(cov.matrix.1)<- rownames(cov.matrix.2)<- colnames(cov.matrix.1)srd.output <- SRD(cov.matrix.1, cov.matrix.2)#listsm.list <- RandomMatrix(10,4)srd.array.result = SRD(m.list)#divergent traitscolnames(cov.matrix.1)[as.logical(srd.output$model$code)]#Plotplot(srd.output)## For the array generated by SRD(m.list) you must index the idividual positions for plotting:plot(srd.array.result[1,2][[1]])plot(srd.array.result[3,4][[1]])## Not run:#Multiple threads can be used with some foreach backend library, like doMC or doParallellibrary(doMC)registerDoMC(cores =2)SRD(m.list, parallel =TRUE)## End(Not run)
References
Marroig, G., Melo, D., Porto, A., Sebastiao, H., and Garcia, G. (2011). Selection Response Decomposition (SRD): A New Tool for Dissecting Differences and Similarities Between Matrices. Evolutionary Biology, 38(2), 225-241. doi:10.1007/s11692-010-9107-2