SRD function

Compare matrices via Selection Response Decomposition

Compare matrices via Selection Response Decomposition

Based on Random Skewers technique, selection response vectors are expanded in direct and indirect components by trait and compared via vector correlations.

SRD(cov.x, cov.y, ...) ## Default S3 method: SRD(cov.x, cov.y, iterations = 1000, ...) ## S3 method for class 'list' SRD(cov.x, cov.y = NULL, iterations = 1000, parallel = FALSE, ...) ## S3 method for class 'SRD' plot(x, matrix.label = "", ...)

Arguments

  • cov.x: Covariance matrix being compared. cov.x can be a matrix or a list.
  • cov.y: Covariance matrix being compared. Ignored if cov.x is a list.
  • ...: additional parameters passed to other methods
  • iterations: Number of random vectors used in comparison
  • parallel: if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.
  • x: Output from SRD function, used in plotting
  • matrix.label: Plot label

Returns

List of SRD scores means, confidence intervals, standard deviations, centered means e centered standard deviations

pc1 scored along the pc1 of the mean/SD correlation matrix

model List of linear model results from mean/SD correlation. Quantiles, interval and divergent traits

Details

Output can be plotted using PlotSRD function

Note

If input is a list, output is a symmetric list array with pairwise comparisons.

Examples

cov.matrix.1 <- cov(matrix(rnorm(30*10), 30, 10)) cov.matrix.2 <- cov(matrix(rnorm(30*10), 30, 10)) colnames(cov.matrix.1) <- colnames(cov.matrix.2) <- sample(letters, 10) rownames(cov.matrix.1) <- rownames(cov.matrix.2) <- colnames(cov.matrix.1) srd.output <- SRD(cov.matrix.1, cov.matrix.2) #lists m.list <- RandomMatrix(10, 4) srd.array.result = SRD(m.list) #divergent traits colnames(cov.matrix.1)[as.logical(srd.output$model$code)] #Plot plot(srd.output) ## For the array generated by SRD(m.list) you must index the idividual positions for plotting: plot(srd.array.result[1,2][[1]]) plot(srd.array.result[3,4][[1]]) ## Not run: #Multiple threads can be used with some foreach backend library, like doMC or doParallel library(doMC) registerDoMC(cores = 2) SRD(m.list, parallel = TRUE) ## End(Not run)

References

Marroig, G., Melo, D., Porto, A., Sebastiao, H., and Garcia, G. (2011). Selection Response Decomposition (SRD): A New Tool for Dissecting Differences and Similarities Between Matrices. Evolutionary Biology, 38(2), 225-241. doi:10.1007/s11692-010-9107-2

See Also

RandomSkewers

Author(s)

Diogo Melo, Guilherme Garcia

  • Maintainer: Diogo Melo
  • License: MIT + file LICENSE
  • Last published: 2023-12-05

Useful links