Evaluation of the DLT rate
Calculate the DLT rate for each trial, the average DLT rate, the percent of trials which have , the percent of trials which have and the percent of trials which have .
dlt_rate( dlt_matrix, trial = FALSE, target_rate = NULL, margin = NULL, digits = 2 )
dlt_matrix
: a matrix of the number of DLT for each step of the trial (column) and for each trial (row).trial
: a logical value indicating if the DLT rate for each trial should be returned.target_rate
: a numerical value of the target rate of DLT.margin
: a numerical value of the acceptable distance from the target_rate
.digits
: a numerical value indicating the number of digits.trial
a numerical vector of the DLT rate for each trial.
average
a numerical value of the average of DLT rate considering a batch of trials.
upper
the percent of trials which the DLT rate > target_rate + margin
if margin != NULL
and target_rate != NULL
.
lower
the percent of trials which the DLT rate < target_rate - margin
if margin != NULL
and target_rate != NULL
.
interval
the percent of trials which the target_rate - margin < DLT rate < target_rate + margin
if margin != NULL
and target_rate != NULL
.
## Not run: DLT <- 0 dose <- 20 step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete', theta = 0.33, alpha = 0.25, min_dose = 0, max_dose = 100, dose_set = seq(0, 100, 20), rho_prior = matrix(1, ncol = 2, nrow = 1), mtd_prior = matrix(1, ncol = 2, nrow = 1), rounding = "nearest") stop_rule_sim(step_zero) response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33, min_dose = 10, max_dose = 50) sim <- ewoc_simulation(step_zero = step_zero, n_sim = 1, sample_size = 2, alpha_strategy = "increasing", response_sim = response_sim, stop_rule_sim = stop_rule_sim, ncores = 2) dlt_rate(sim$dlt_sim) ## End(Not run) ## Not run: DLT <- 0 dose <- 20 step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete', theta = 0.33, alpha = 0.25, min_dose = 0, max_dose = 100, dose_set = seq(0, 100, 20), rho_prior = matrix(1, ncol = 2, nrow = 1), mtd_prior = matrix(1, ncol = 2, nrow = 1), rounding = "nearest") stop_rule_sim(step_zero) response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33, min_dose = 10, max_dose = 50) sim <- ewoc_simulation(step_zero = step_zero, n_sim = 2, sample_size = 30, alpha_strategy = "increasing", response_sim = response_sim, stop_rule_sim = stop_rule_sim, ncores = 2) dlt_rate(sim$dlt_sim) ## End(Not run)