Operating characteristics for EWOC simulations
Generic operating characteristics for one or more scenarios in EWOC simulations.
opc(sim_list, pdlt_list, mtd_list, toxicity_margin = NULL, mtd_margin = NULL)
sim_list
: a list of 'ewoc_simulation' objects for different scenarios created using the ewoc_simulation
function.pdlt_list
: a list of functions to calculate the probability of toxicity with a numeric vector of doses as input and a numeric vector of probabilities as output.mtd_list
: a list of numerical values indicating the true MTD for each scenario.toxicity_margin
: a numerical value of the acceptable margin of distance from the target_rate
.mtd_margin
: a numerical value of the acceptable margin of distance from the mtd_list
.dlt_rate
See dlt_rate
.
dose_toxicity
See optimal_toxicity
.
mtd_toxicity
See optimal_toxicity
.
statistics
See mtd_bias
and mtd_mse
.
dose_efficiency
See optimal_mtd
.
mtd_efficiency
See optimal_mtd
.
stop
See stop_rule
.
## Not run: ### Only one simulation DLT <- 0 dose <- 20 step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete', theta = 0.33, alpha = 0.25, min_dose = 20, max_dose = 100, dose_set = seq(20, 100, 20), rho_prior = matrix(1, ncol = 2, nrow = 1), mtd_prior = matrix(1, ncol = 2, nrow = 1), rounding = "nearest") response_sim <- response_d1classical(rho = 0.05, mtd = 60, theta = 0.33, min_dose = 20, max_dose = 100) sim <- ewoc_simulation(step_zero = step_zero, n_sim = 1, sample_size = 30, n_cohort = 1, alpha_strategy = "conditional", response_sim = response_sim, fixed_first_cohort = TRUE, ncores = 1) pdlt <- pdlt_d1classical(rho = 0.05, mtd = 60, theta = 0.33, min_dose = 20, max_dose = 100) opc(sim_list = list(sim), pdlt_list = list(pdlt), mtd_list = list(60), toxicity_margin = 0.05, mtd_margin = 6) ### Two or more simulations sim_list <- list() mtd_list <- list() pdlt_list <- list() DLT <- 0 dose <- 20 step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete', theta = 0.33, alpha = 0.25, min_dose = 20, max_dose = 100, dose_set = seq(20, 100, 20), rho_prior = matrix(1, ncol = 2, nrow = 1), mtd_prior = matrix(1, ncol = 2, nrow = 1), rounding = "nearest") mtd_list[[1]] <- 60 response_sim <- response_d1classical(rho = 0.05, mtd = mtd_list[[1]], theta = 0.33, min_dose = 20, max_dose = 100) sim_list[[1]] <- ewoc_simulation(step_zero = step_zero, n_sim = 1, sample_size = 30, n_cohort = 1, alpha_strategy = "conditional", response_sim = response_sim, fixed_first_cohort = TRUE, ncores = 1) pdlt_list[[1]] <- pdlt_d1classical(rho = 0.05, mtd = mtd_list[[1]], theta = 0.33, min_dose = 20, max_dose = 100) mtd_list[[2]] <- 40 response_sim <- response_d1classical(rho = 0.05, mtd = mtd_list[[2]], theta = 0.33, min_dose = 20, max_dose = 100) sim_list[[2]] <- ewoc_simulation(step_zero = step_zero, n_sim = 1, sample_size = 30, n_cohort = 1, alpha_strategy = "conditional", response_sim = response_sim, fixed_first_cohort = TRUE, ncores = 1) pdlt_list[[2]] <- pdlt_d1classical(rho = 0.05, mtd = mtd_list[[2]], theta = 0.33, min_dose = 20, max_dose = 100) opc(sim_list = sim_list, pdlt_list = pdlt_list, mtd_list = mtd_list, toxicity_margin = 0.05, mtd_margin = 6) ## End(Not run)
Diniz, M. A., Tighiouart, M., & Rogatko, A. (2019). Comparison between continuous and discrete doses for model based designs in cancer dose finding. PloS one, 14(1).