seir.auxiliary function

Auxiliary Functions for the SEIR Model without Forcing

Auxiliary Functions for the SEIR Model without Forcing

Calculate the basic reproduction number, endemic equilibrium, and Jacobian matrix of the SEIR model without forcing.

seir.R0 (beta, nu = 0, mu = 0, sigma = 1, gamma = 1, delta = 0, m = 1L, n = 1L, N = 1) seir.ee (beta, nu = 0, mu = 0, sigma = 1, gamma = 1, delta = 0, m = 1L, n = 1L, N = 1) seir.jacobian(beta, nu = 0, mu = 0, sigma = 1, gamma = 1, delta = 0, m = 1L, n = 1L)

Arguments

  • beta, nu, mu, sigma, gamma, delta: non-negative numbers. beta, nu, and mu are the rates of transmission, birth, and natural death. m*sigma, n*gamma, and delta are the rates of removal from each latent, infectious, and recovered compartment.
  • m: a non-negative integer indicating a number of latent stages.
  • n: a positive integer indicating a number of infectious stages.
  • N: a non-negative number indicating a population size for the (nu == 0 && mu == 0) case.

Returns

seir.R0 returns a numeric vector of length 1. seir.ee

returns a numeric vector of length 1+m+n+1. seir.jacobian

returns a function of one argument x (which must be a numeric vector of length 1+m+n+1) whose return value is a square numeric matrix of size length(x).

Details

If mu=0andnu=0mu = 0 and nu = 0, then the basic reproduction number is computed as

R0=Nβ/\gammaR0=Nbeta/gamma \mathcal{R}_{0} = N \beta / \gammaR_0 = N * beta / gamma

and the endemic equilibrium is computed as

[S1EiIjR1]=[γ/βwδ/(mσ)wδ/(nγ)w]S=gamma/betaE[i]=wdelta/(msigma)I[j]=wdelta/(msigma)R=w \begin{bmatrix}S^{\hphantom{1}} \\E^{i} \\I^{j} \\R^{\hphantom{1}}\end{bmatrix}=\begin{bmatrix}\gamma / \beta \\w \delta / (m \sigma) \\w \delta / (n \gamma) \\w\end{bmatrix}S = gamma / betaE[i] = w * delta / (m * sigma)I[j] = w * delta / (m * sigma)R = w

where ww is chosen so that the sum is NN.

If mu>0andnu>0mu > 0 and nu > 0, then the basic reproduction number is computed as

R0=νβam(1bn)/μ2R0=nubetaam(1bn)/mu2 \mathcal{R}_{0} = \nu \beta a^{-m} (1 - b^{-n}) / \mu^{2}R_0 = nu * beta * a^-m * (1 - b^-n) / mu^2

and the endemic equilibrium is computed as

[S1EiIjR1]=[μam/(β(1bn))wamibn(δ+μ)/(mσ)wbnj(δ+μ)/(nγ)w]S=muam/(beta(1bn))E[i]=wa(mi)bn(delta+mu)/(msigma)I[j]=wb(nj)(delta+mu)/(ngamma)R=w \begin{bmatrix}S^{\hphantom{1}} \\E^{i} \\I^{j} \\R^{\hphantom{1}}\end{bmatrix}=\begin{bmatrix}\mu a^{m} / (\beta (1 - b^{-n})) \\w a^{m - i} b^{n} (\delta + \mu) / (m \sigma) \\w b^{n - j} (\delta + \mu) / (n \gamma) \\w\end{bmatrix}S = mu * a^m / (beta * (1 - b^-n))E[i] = w * a^(m - i) * b^n * (delta + mu) / (m * sigma)I[j] = w * b^(n - j) * (delta + mu) / (n * gamma)R = w

where ww is chosen so that the sum is nu/munu / mu, the population size at equilibrium, and a=1+mu/(msigma)a = 1 + mu / (m * sigma) and b=1+mu/(ngamma)b = 1 + mu / (n * gamma).

Currently, none of the functions documented here are vectorized. Arguments must have length 1.

See Also

seir, for the system of ordinary differential equations on which these computations are predicated.

  • Maintainer: Mikael Jagan
  • License: GPL (>= 2)
  • Last published: 2025-03-24