geostan0.7.0 package

Bayesian Spatial Analysis

aple

Spatial autocorrelation estimator

auto_gaussian

Auto-Gaussian family for CAR models

edges

Edge list

eigen_grid

Eigenvalues of a spatial weights matrix: for spatial regression with r...

expected_mc

Expected value of the residual Moran coefficient

geostan-package

The geostan R package.

get_shp

Download shapefiles

gr

The Geary Ratio

lg

Local Geary

lisa

Local Moran's I

log_lik

Extract log-likelihood

make_EV

Extract eigenfunctions of a connectivity matrix for spatial filtering

mc

The Moran coefficient (Moran's I)

me_diag

Measurement error model diagnostics

moran_plot

Moran scatter plot

n_eff

Effective sample size

n_nbs

Count neighbors in a connectivity matrix

posterior_predict

Draw samples from the posterior predictive distribution

predict.geostan_fit

Predict method for geostan_fit models

prep_car_data

Prepare data for the CAR model

prep_car_data2

Prepare data for the CAR model: raster analysis

prep_icar_data

Prepare data for ICAR models

prep_me_data

Prepare data for spatial measurement error models

prep_sar_data

Prepare data for a simultaneous autoregressive (SAR) model

prep_sar_data2

Prepare data for SAR model: raster analysis

print_geostan_fit

print or plot a fitted geostan model

priors

Prior distributions

resid_geostan_fit

Extract residuals, fitted values, or the spatial trend

row_standardize

Row-standardize a matrix; safe for zero row-sums.

samples_geostan_fit

Extract samples from a fitted model

se_log

Standard error of log(x)

shape2mat

Create spatial and space-time connectivity matrices

sim_sar

Simulate spatially autocorrelated data

sp_diag

Visual displays of spatial data and spatial models

stan_car

Conditional autoregressive (CAR) models

stan_esf

Spatial filtering

stan_glm

Generalized linear models

stan_icar

Intrinsic autoregressive models

stan_sar

Simultaneous autoregressive (SAR) models

waic

Model comparison

For spatial data analysis; provides exploratory spatial analysis tools, spatial regression models, disease mapping models, model diagnostics, and special methods for inference with small area survey data (e.g., the America Community Survey (ACS)) and censored population health surveillance data. Models are pre-specified using the Stan programming language, a platform for Bayesian inference using Markov chain Monte Carlo (MCMC). References: Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>; Donegan (2021) <doi:10.31219/osf.io/3ey65>; Donegan (2022) <doi:10.21105/joss.04716>; Donegan, Chun and Hughes (2020) <doi:10.1016/j.spasta.2020.100450>; Donegan, Chun and Griffith (2021) <doi:10.3390/ijerph18136856>; Morris et al. (2019) <doi:10.1016/j.sste.2019.100301>.

  • Maintainer: Connor Donegan
  • License: GPL (>= 3)
  • Last published: 2024-09-18