padding: distance from legend to corner of the plot (used with extent = "device")
force: force new map (don't use archived version)
darken: vector of the form c(number, color), where number is in (0,1) and color is a character string indicating the color of the darken. 0 indicates no darkening, 1 indicates a black-out.
mapcolor: color ("color") or black-and-white ("bw")
facets: faceting formula to use. Picks facet_wrap() or facet_grid() depending on whether the formula is one sided or two-sided
margins: whether or not margins will be displayed
geom: character vector specifying geom to use. defaults to "point"
stat: character vector specifying statistics to use
position: character vector giving position adjustment to use
xlim: limits for x axis
ylim: limits for y axis
main: character vector or expression for plot title
f: number specifying the fraction by which the range should be extended
xlab: character vector or expression for x axis label
ylab: character vector or expression for y axis label
Examples
## Not run:# these are skipped to conserve R check timeqmplot(lon, lat, data = crime)# only violent crimesviolent_crimes <- subset(crime, offense !="auto theft"& offense !="theft"& offense !="burglary")# rank violent crimesviolent_crimes$offense <- factor( violent_crimes$offense, levels = c("robbery","aggravated assault","rape","murder"))# restrict to downtownviolent_crimes <- subset(violent_crimes,-95.39681<= lon & lon <=-95.34188&29.73631<= lat & lat <=29.78400)theme_set(theme_bw())qmplot(lon, lat, data = violent_crimes, colour = offense, size = I(3.5), alpha = I(.6), legend ="topleft")qmplot(lon, lat, data = violent_crimes, geom = c("point","density2d"))qmplot(lon, lat, data = violent_crimes)+ facet_wrap(~ offense)qmplot(lon, lat, data = violent_crimes, extent ="panel")+ facet_wrap(~ offense)qmplot(lon, lat, data = violent_crimes, extent ="panel", colour = offense, darken =.4)+ facet_wrap(~ month)qmplot(long, lat, xend = long + delta_long, color = I("red"), yend = lat + delta_lat, data = seals, geom ="segment", zoom =5)qmplot(long, lat, xend = long + delta_long, maptype ="stamen_watercolor", yend = lat + delta_lat, data = seals, geom ="segment", zoom =6)qmplot(long, lat, xend = long + delta_long, maptype ="stamen_terrain", yend = lat + delta_lat, data = seals, geom ="segment", zoom =6)qmplot(lon, lat, data = wind, size = I(.5), alpha = I(.5))+ ggtitle("NOAA Wind Report Sites")# thin down data set...s <- seq(1,227,8)thinwind <- subset(wind, lon %in% unique(wind$lon)[s]& lat %in% unique(wind$lat)[s])# for some reason adding arrows to the following plot bugstheme_set(theme_bw(18))qmplot(lon, lat, data = thinwind, geom ="tile", fill = spd, alpha = spd, legend ="bottomleft")+ geom_leg(aes(xend = lon + delta_lon, yend = lat + delta_lat))+ scale_fill_gradient2("Wind Speed\nand\nDirection", low ="green", mid = scales::muted("green"), high ="red")+ scale_alpha("Wind Speed\nand\nDirection", range = c(.1,.75))+ guides(fill = guide_legend(), alpha = guide_legend())## kriging############################################################# the below examples show kriging based on undeclared packages# to better comply with CRAN's standards, we remove it from# executing, but leave the code as a kind of case-study# they also require the rgdal librarylibrary(lattice)library(sp)library(rgdal)# load in and format the meuse dataset (see bivand, pebesma, and gomez-rubio)data(meuse)coordinates(meuse)<- c("x","y")proj4string(meuse)<- CRS("+init=epsg:28992")meuse <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84"))# plotplot(meuse)m <- data.frame(slot(meuse,"coords"), slot(meuse,"data"))names(m)[1:2]<- c("lon","lat")qmplot(lon, lat, data = m)qmplot(lon, lat, data = m, zoom =14)qmplot(lon, lat, data = m, size = zinc, zoom =14, source ="google", maptype ="satellite", alpha = I(.75), color = I("green"), legend ="topleft", darken =.2)+ scale_size("Zinc (ppm)")# load in the meuse.grid dataset (looking toward kriging)library(gstat)data(meuse.grid)coordinates(meuse.grid)<- c("x","y")proj4string(meuse.grid)<- CRS("+init=epsg:28992")meuse.grid <- spTransform(meuse.grid, CRS("+proj=longlat +datum=WGS84"))# plot itplot(meuse.grid)mg <- data.frame(slot(meuse.grid,"coords"), slot(meuse.grid,"data"))names(mg)[1:2]<- c("lon","lat")qmplot(lon, lat, data = mg, shape = I(15), zoom =14, legend ="topleft")+ geom_point(aes(size = zinc), data = m, color ="green")+ scale_size("Zinc (ppm)")# interpolate at unobserved locations (i.e. at meuse.grid points)# pre-define scale for consistencyscale <- scale_color_gradient("Predicted\nZinc (ppm)", low ="green", high ="red", lim = c(100,1850))# inverse distance weightingidw <- idw(log(zinc)~1, meuse, meuse.grid, idp =2.5)mg$idw <- exp(slot(idw,"data")$var1.pred)qmplot(lon, lat, data = mg, shape = I(15), color = idw, zoom =14, legend ="topleft", alpha = I(.75), darken =.4)+ scale
# linear regressionlin <- krige(log(zinc)~1, meuse, meuse.grid, degree =1)mg$lin <- exp(slot(lin,"data")$var1.pred)qmplot(lon, lat, data = mg, shape = I(15), color = lin, zoom =14, legend ="topleft", alpha = I(.75), darken =.4)+ scale
# trend surface analysistsa <- krige(log(zinc)~1, meuse, meuse.grid, degree =2)mg$tsa <- exp(slot(tsa,"data")$var1.pred)qmplot(lon, lat, data = mg, shape = I(15), color = tsa, zoom =14, legend ="topleft", alpha = I(.75), darken =.4)+ scale
# ordinary krigingvgram <- variogram(log(zinc)~1, meuse)# plot(vgram)vgramFit <- fit.variogram(vgram, vgm(1,"Exp",.2,.1))ordKrige <- krige(log(zinc)~1, meuse, meuse.grid, vgramFit)mg$ordKrige <- exp(slot(ordKrige,"data")$var1.pred)qmplot(lon, lat, data = mg, shape = I(15), color = ordKrige, zoom =14, legend ="topleft", alpha = I(.75), darken =.4)+ scale
# universal krigingvgram <- variogram(log(zinc)~1, meuse)# plot(vgram)vgramFit <- fit.variogram(vgram, vgm(1,"Exp",.2,.1))univKrige <- krige(log(zinc)~ sqrt(dist), meuse, meuse.grid, vgramFit)mg$univKrige <- exp(slot(univKrige,"data")$var1.pred)qmplot(lon, lat, data = mg, shape = I(15), color = univKrige, zoom =14, legend ="topleft", alpha = I(.75), darken =.4)+ scale
# adding observed data layerqmplot(lon, lat, data = mg, shape = I(15), color = univKrige, zoom =14, legend ="topleft", alpha = I(.75), darken =.4)+ geom_point( aes(x = lon, y = lat, size = zinc), data = m, shape =1, color ="black")+ scale + scale_size("Observed\nLog Zinc")## End(Not run)# end dontrun