ggstatsplot0.13.0 package

'ggplot2' Based Plots with Statistical Details

combine_plots

Combining and arranging multiple plots in a grid

dot-grouped_list

Split data frame into a list by grouping variable

dot-is_palette_sufficient

Check if palette has enough number of colors

extract_stats

Extracting data frames or expressions from {ggstatsplot} plots

ggbarstats

Stacked bar charts with statistical tests

ggbetweenstats

Box/Violin plots for between-subjects comparisons

ggcoefstats

Dot-and-whisker plots for regression analyses

ggcorrmat

Visualization of a correlation matrix

ggdotplotstats

Dot plot/chart for labeled numeric data.

gghistostats

Histogram for distribution of a numeric variable

ggpiestats

Pie charts with statistical tests

ggscatterstats

Scatterplot with marginal distributions and statistical results

ggstatsplot-package

ggstatsplot: 'ggplot2' Based Plots with Statistical Details

ggwithinstats

Box/Violin plots for repeated measures comparisons

grouped_ggbarstats

Grouped bar charts with statistical tests

grouped_ggbetweenstats

Violin plots for group or condition comparisons in between-subjects de...

grouped_ggcorrmat

Visualization of a correlalogram (or correlation matrix) for all level...

grouped_ggdotplotstats

Grouped histograms for distribution of a labeled numeric variable

grouped_gghistostats

Grouped histograms for distribution of a numeric variable

grouped_ggpiestats

Grouped pie charts with statistical tests

grouped_ggscatterstats

Scatterplot with marginal distributions for all levels of a grouping v...

grouped_ggwithinstats

Violin plots for group or condition comparisons in within-subjects des...

reexports

Objects exported from other packages

theme_ggstatsplot

Default theme used in {ggstatsplot}

Extension of 'ggplot2', 'ggstatsplot' creates graphics with details from statistical tests included in the plots themselves. It provides an easier syntax to generate information-rich plots for statistical analysis of continuous (violin plots, scatterplots, histograms, dot plots, dot-and-whisker plots) or categorical (pie and bar charts) data. Currently, it supports the most common types of statistical approaches and tests: parametric, nonparametric, robust, and Bayesian versions of t-test/ANOVA, correlation analyses, contingency table analysis, meta-analysis, and regression analyses. References: Patil (2021) <doi:10.21105/joss.03236>.

  • Maintainer: Indrajeet Patil
  • License: GPL-3 | file LICENSE
  • Last published: 2024-12-04