hdm0.3.2 package

High-Dimensional Metrics

coef.rlassoEffects

Coefficients from S3 objects rlassoEffects

coef.rlassoIV

Coefficients from S3 objects rlassoIV

coef.rlassoIVselectX

Coefficients from S3 objects rlassoIVselectX

coef.rlassoIVselectZ

Coefficients from S3 objects rlassoIVselectZ

Growth-Data

Growth data set

hdm-package

hdm: High-Dimensional Metrics

lambdaCalculation

Function for Calculation of the penalty parameter

LassoShooting.fit

Shooting Lasso

methods.rlasso

Methods for S3 object rlasso

methods.rlassoEffects

Methods for S3 object rlassoEffects

methods.rlassoIV

Methods for S3 object rlassoIV

methods.rlassoIVselectX

Methods for S3 object rlassoIVselectX

methods.rlassoIVselectZ

Methods for S3 object rlassoIVselectZ

methods.rlassologit

Methods for S3 object rlassologit

methods.rlassologitEffects

Methods for S3 object rlassologitEffects

methods.rlassoTE

Methods for S3 object rlassoTE

methods.tsls

Methods for S3 object tsls

p_adjust

Multiple Testing Adjustment of p-values for S3 objects rlassoEffects...

print_coef

Printing coefficients from S3 objects rlassoEffects

rlasso

rlasso: Function for Lasso estimation under homoscedastic and heterosc...

rlassoEffects

rigorous Lasso for Linear Models: Inference

rlassoIV

Post-Selection and Post-Regularization Inference in Linear Models with...

rlassoIVselectX

Instrumental Variable Estimation with Selection on the exogenous Varia...

rlassoIVselectZ

Instrumental Variable Estimation with Lasso

rlassologit

rlassologit: Function for logistic Lasso estimation

rlassologitEffects

rigorous Lasso for Logistic Models: Inference

summary.rlassoEffects

Summarizing rlassoEffects fits

TE

Functions for estimation of treatment effects

tsls

Two-Stage Least Squares Estimation (TSLS)

Implementation of selected high-dimensional statistical and econometric methods for estimation and inference. Efficient estimators and uniformly valid confidence intervals for various low-dimensional causal/ structural parameters are provided which appear in high-dimensional approximately sparse models. Including functions for fitting heteroscedastic robust Lasso regressions with non-Gaussian errors and for instrumental variable (IV) and treatment effect estimation in a high-dimensional setting. Moreover, the methods enable valid post-selection inference and rely on a theoretically grounded, data-driven choice of the penalty. Chernozhukov, Hansen, Spindler (2016) <arXiv:1603.01700>.

  • Maintainer: Martin Spindler
  • License: MIT + file LICENSE
  • Last published: 2024-02-14