rule: Model selection criterion, "lambda.min" or "lambda.1se". See cv.glmnet
for details.
seed: A random seed for cross-validation fold division.
parallel: Logical. Enable parallel parameter tuning or not, default is FALSE. To enable parallel tuning, load the doParallel package and run registerDoParallel()
with the number of CPU cores before calling this function.
Examples
data("smart")x <- as.matrix(smart[,-c(1,2)])time <- smart$TEVENT
event <- smart$EVENT
y <- survival::Surv(time, event)# To enable parallel parameter tuning, first run:# library("doParallel")# registerDoParallel(detectCores())# then set fit_enet(..., parallel = TRUE).fit <- fit_enet( x, y, nfolds =3, alphas = c(0.3,0.7), rule ="lambda.1se", seed =11)nom <- as_nomogram( fit, x, time, event, pred.at =365*2, funlabel ="2-Year Overall Survival Probability")plot(nom)