initial estimation of the model parameters for a specified emission distribution
Provides the initial estimates of the model parameters of a specified emission distribution characterized by the mstep
function, for an initial clustering obtained by initial_cluster
initial_estimate(clus, mstep = mixmvnorm_mstep, verbose = FALSE, ...)
clus
: an initial clustering obtained by initial_cluster
mstep
: the mstep function of the EM algorithm with an style simillar to that of mixmvnorm_mstep
verbose
: logical. if TRUE the outputs will be printed...
: additional parameters of the mstep
functiona list containing the following items:
emission
list the estimated parameterers of the emission distributionleng
list of waiting times in each state for each sequenceclusters
the exact clusters of each observation (available if ltr
=FALSE)nmix
the number of mixture components (a vector of positive (non-zero) integers of length nstate
)ltr
logical. if TRUE a left to right hidden hybrid Markovian/semi-Markovianmodel is assumedJ <- 3 initial <- c(1, 0, 0) semi <- c(FALSE, TRUE, FALSE) P <- matrix(c(0.8, 0.1, 0.1, 0.5, 0, 0.5, 0.1, 0.2, 0.7), nrow = J, byrow = TRUE) par <- list(mu = list(list(7, 8), list(10, 9, 11), list(12, 14)), sigma = list(list(3.8, 4.9), list(4.3, 4.2, 5.4), list(4.5, 6.1)), mix.p = list(c(0.3, 0.7), c(0.2, 0.3, 0.5), c(0.5, 0.5))) sojourn <- list(shape = c(0, 3, 0), scale = c(0, 10, 0), type = "gamma") model <- hhsmmspec(init = initial, transition = P, parms.emis = par, dens.emis = dmixmvnorm, sojourn = sojourn, semi = semi) train <- simulate(model, nsim = c(10, 8, 8, 18), seed = 1234, remission = rmixmvnorm) clus = initial_cluster(train, nstate = 3, nmix = c(2 ,2, 2),ltr = FALSE, final.absorb = FALSE, verbose = TRUE) par = initial_estimate(clus, verbose = TRUE)
Morteza Amini, morteza.amini@ut.ac.ir , Afarin Bayat, aftbayat@gmail.com
Useful links