hhsmm0.4.2 package

Hidden Hybrid Markov/Semi-Markov Model Fitting

additive_reg_mstep

the M step function of the EM algorithm

addreg_hhsmm_predict

predicting the response values for the regime switching model

cov.miss.mix.wt

weighted covariance for data with missing values

cov.mix.wt

weighted covariance

dmixlm

pdf of the mixture of Gaussian linear (Markov-switching) models for hh...

dmixmvnorm

pdf of the mixture of multivariate normals for hhsmm

dmultinomial.hhsmm

pdf of the multinomial emission distribution for hhsmm

dnonpar

pdf of the mixture of B-splines for hhsmm

dnorm_additive_reg

pdf of the Gaussian additive (Markov-switching) model for hhsmm

drobust

pdf of the mixture of the robust emission proposed by Qin et al. (2024...

hhsmmdata

convert to hhsmm data

hhsmmfit

hhsmm model fit

hhsmmspec

hhsmm specification

homogeneity

Computing maximum homogeneity of two state sequences

initial_cluster

initial clustering of the data set

initial_estimate

initial estimation of the model parameters for a specified emission di...

initialize_model

initialize the hhsmmspec model for a specified emission distribution

lagdata

Create hhsmm data of lagged time series

ltr_clus

left to right clustering

ltr_reg_clus

left to right linear regression clustering

make_model

make a hhsmmspec model for a specified emission distribution

miss_mixmvnorm_mstep

the M step function of the EM algorithm

mixdiagmvnorm_mstep

the M step function of the EM algorithm

mixlm_mstep

the M step function of the EM algorithm

mixmvnorm_mstep

the M step function of the EM algorithm

mstep.multinomial

the M step function of the EM algorithm

nonpar_mstep

the M step function of the EM algorithm

predict.hhsmm

prediction of state sequence for hhsmm

predict.hhsmmspec

prediction of state sequence for hhsmm

raddreg

Random data generation from the Gaussian additive (Markov-switching) m...

rmixar

Random data generation from the mixture of Gaussian linear (Markov-swi...

rmixlm

Random data generation from the mixture of Gaussian linear (Markov-swi...

rmixmvnorm

Random data generation from the mixture of multivariate normals for hh...

rmultinomial.hhsmm

Random data generation from the multinomial emission distribution for ...

robust_mstep

the M step function of the EM algorithm

score

the score of new observations

simulate.hhsmmspec

Simulation of data from hhsmm model

train_test_split

Splitting the data sets to train and test

Develops algorithms for fitting, prediction, simulation and initialization of the following models (1)- hidden hybrid Markov/semi-Markov model, introduced by Guedon (2005) <doi:10.1016/j.csda.2004.05.033>, (2)- nonparametric mixture of B-splines emissions (Langrock et al., 2015 <doi:10.1111/biom.12282>), (3)- regime switching regression model (Kim et al., 2008 <doi:10.1016/j.jeconom.2007.10.002>) and auto-regressive hidden hybrid Markov/semi-Markov model, (4)- spline-based nonparametric estimation of additive state-switching models (Langrock et al., 2018 <doi:10.1111/stan.12133>) (5)- robust emission model proposed by Qin et al, 2024 <doi:10.1007/s10479-024-05989-4> (6)- several emission distributions, including mixture of multivariate normal (which can also handle missing data using EM algorithm) and multi-nomial emission (for modeling polymer or DNA sequences) (7)- tools for prediction of future state sequence, computing the score of a new sequence, splitting the samples and sequences to train and test sets, computing the information measures of the models, computing the residual useful lifetime (reliability) and many other useful tools ... (read for more description: Amini et al., 2022 <doi:10.1007/s00180-022-01248-x> and its arxiv version: <doi:10.48550/arXiv.2109.12489>).

  • Maintainer: Morteza Amini
  • License: GPL-3
  • Last published: 2024-09-04