the M step function of the EM algorithm
The M step function of the EM algorithm for the robust emission proposed by Qin et al. (2024) using the observation matrix and the estimated weight vectors
robust_mstep(x, wt, control = list(k = 1.345))
x
: the observation matrixwt
: the state probabilities matrix (number of observations times number of states)control
: a list containing the control parameter k with the default value equal to 1.345list of emission parameters: (mu
and sigma
)
J <- 3 initial <- c(1, 0, 0) semi <- c(FALSE, TRUE, FALSE) P <- matrix(c(0.8, 0.1, 0.1, 0.5, 0, 0.5, 0.1, 0.2, 0.7), nrow = J, byrow = TRUE) par <- list(mu = list(list(7, 8), list(10, 9, 11), list(12, 14)), sigma = list(list(3.8, 4.9), list(4.3, 4.2, 5.4), list(4.5, 6.1)), mix.p = list(c(0.3, 0.7), c(0.2, 0.3, 0.5), c(0.5, 0.5))) sojourn <- list(shape = c(0, 3, 0), scale = c(0, 10, 0), type = "gamma") model <- hhsmmspec(init = initial, transition = P, parms.emis = par, dens.emis = dmixmvnorm, sojourn = sojourn, semi = semi) train <- simulate(model, nsim = c(10, 8, 8, 18), seed = 1234, remission = rmixmvnorm) clus = initial_cluster(train, nstate = 3, nmix = NULL ,ltr = FALSE, final.absorb = FALSE, verbose = TRUE) initmodel1 = initialize_model(clus = clus, sojourn = "gamma", M = max(train$N), semi = semi, dens.emission = drobust, mstep = robust_mstep) # not test # fit1 = hhsmmfit(x = train, model = initmodel1, M = max(train$N), # mstep = robust_mstep)
Qin, S., Tan, Z., & Wu, Y. (2024). On robust estimation of hidden semi-Markov regime-switching models. Annals of Operations Research, 1-33.
Morteza Amini, morteza.amini@ut.ac.ir
Useful links