Jack, Zonal, Schur, and Other Symmetric Polynomials
Symmetric polynomial in terms of the Schur polynomials
Schur polynomial - C++ implementation
Skew t-Schur polynomial
Evaluation of zonal polynomial - C++ implementation
Zonal polynomial - C++ implementation
Evaluation of elementary symmetric functions
Evaluation of Schur polynomial - C++ implementation
Factorial Schur polynomial
Flagged Schur polynomial
Flagged skew Schur polynomial
Hall-Littlewood polynomial
Hall polynomials
Evaluation of Jack polynomial - C++ implementation
Symmetric polynomial in terms of Jack polynomials
Jack polynomial - C++ implementation
Jack polynomial
Evaluation of Jack polynomials
Jack polynomial with symbolic Jack parameter
Kostka-Foulkes polynomial
Kostka-Jack numbers with a given Jack parameter
Kostka-Jack numbers with a given partition
Littlewood-Richardson rule for multiplication
Littlewood-Richardson rule for skew Schur polynomial
Macdonald polynomial
Modified Macdonald polynomial
Evaluation of monomial symmetric functions
qt-Kostka polynomials
Skew qt-Kostka polynomials
Schur polynomial
Evaluation of Schur polynomials
Skew factorial Schur polynomial
Skew Hall-Littlewood polynomial
Skew Jack polynomial
Skew Jack polynomial with symbolic Jack parameter
Skew Kostka-Foulkes polynomial
Skew Kostka-Jack numbers with given Jack parameter
Skew Macdonald polynomial
Skew Schur polynomial
Symmetric polynomial in terms of symbolic Jack polynomials
Kostka-Jack numbers with symbolic Jack parameter
Kostka-Jack numbers with symbolic Jack parameter for a given
Skew Kostka-Jack numbers with symbolic Jack parameter
t-Schur polynomial
Zonal polynomial
Evaluation of zonal quaternionic polynomial - C++ implementation
Quaternionic zonal polynomial - C++ implementation
Quaternionic zonal polynomial
Evaluation of quaternionic zonal polynomials
Evaluation of zonal polynomials
Schur polynomials appear in combinatorics and zonal polynomials appear in random matrix theory. They are particular cases of Jack polynomials. This package allows to compute these polynomials and other symmetric multivariate polynomials: flagged Schur polynomials, factorial Schur polynomials, t-Schur polynomials, Hall-Littlewood polynomials, Macdonald polynomials, and modified Macdonald polynomials. In addition, it can compute the Kostka-Jack numbers, the Kostka-Foulkes polynomials, the Kostka-Macdonald polynomials, and the Hall polynomials. Mainly based on Demmel & Koev's paper (2006) <doi:10.1090/S0025-5718-05-01780-1> and Macdonald's book (1995) <doi:10.1093/oso/9780198534891.003.0001>.