qtKostkaPolynomials function

qt-Kostka polynomials

qt-Kostka polynomials

qt-Kostka polynomials, aka Kostka-Macdonald polynomials.

qtKostkaPolynomials(mu)

Arguments

  • mu: integer partition

Returns

A list. The qt-Kostka polynomials are usually denoted by Kλ,μ(q,t)K_{\lambda, \mu}(q, t) where qq and tt denote the two variables and λ\lambda and μ\mu are two integer partitions. One obtains the Kostka-Foulkes polynomials by substituting qq

with 00. For a given partition μ\mu, the function returns the polynomials Kλ,μ(q,t)K_{\lambda, \mu}(q, t) as qspray objects for all partitions λ\lambda of the same weight as μ\mu. The generated list is a list of lists with two elements: the integer partition λ\lambda and the polynomial.

  • Maintainer: Stéphane Laurent
  • License: GPL-3
  • Last published: 2024-07-29