Tidying methods for joint models for time-to-event data and multivariate longitudinal data
Tidying methods for joint models for time-to-event data and multivariate longitudinal data
These methods tidy the coefficients of joint models for time-to-event data and multivariate longitudinal data of the mjoint class from the joineRML package.
## S3 method for class 'mjoint'tidy( x, component ="survival", bootSE =NULL, conf.int =FALSE, conf.level =0.95,...)## S3 method for class 'mjoint'augment(x, data = x$data,...)## S3 method for class 'mjoint'glance(x,...)
Arguments
x: An object of class mjoint.
component: Either survival (the survival component of the model, default) or longitudinal (the longitudinal component).
bootSE: An object of class bootSE for the corresponding model. If bootSE = NULL (the default), the function will use approximate standard error estimates calculated from the empirical information matrix.
conf.int: Include (1 - conf.level)% confidence intervals? Defaults to FALSE.
conf.level: The confidence level required.
...: extra arguments (not used)
data: Original data this was fitted on, in a list (e.g. list(data)). This will be extracted from x if not given.
Returns
All tidying methods return a data.frame without rownames. The structure depends on the method chosen.
tidy returns one row for each estimated fixed effect depending on the component parameter. It contains the following columns: - term: The term being estimated - estimate: Estimated value
std.error: Standard error - statistic: Z-statistic
p.value: P-value computed from Z-statistic - conf.low: The lower bound of a confidence interval on estimate, if required
conf.high: The upper bound of a confidence interval on estimate, if required.
augment returns one row for each original observation, with columns (each prepended by a .) added. Included are the columns: - .fitted_j_0: population-level fitted values for the j-th longitudinal process - .fitted_j_1: individuals-level fitted values for the j-th longitudinal process - .resid_j_0: population-level residuals for the j-th longitudinal process - .resid_j_1: individual-level residuals for the j-th longitudinal process See fitted.mjoint
and residuals.mjoint for more information on the difference between population-level and individual-level fitted values and residuals.
glance returns one row with the columns - sigma2_j: the square root of the estimated residual variance for the j-th longitudinal process - AIC: the Akaike Information Criterion - BIC: the Bayesian Information Criterion - logLik: the data's log-likelihood under the model.
Note
If fitting a joint model with a single longitudinal process, please make sure you are using a named list to define the formula for the fixed and random effects of the longitudinal submodel.
Examples
## Not run:# Fit a joint model with bivariate longitudinal outcomeslibrary(joineRML)data(heart.valve)hvd <- heart.valve[!is.na(heart.valve$log.grad)&!is.na(heart.valve$log.lvmi)& heart.valve$num <=50,]fit <- mjoint( formLongFixed = list("grad"= log.grad ~ time + sex + hs,"lvmi"= log.lvmi ~ time + sex
), formLongRandom = list("grad"=~1| num,"lvmi"=~ time | num
), formSurv = Surv(fuyrs, status)~ age, data = hvd, inits = list("gamma"= c(0.11,1.51,0.80)), timeVar ="time")# Extract the survival fixed effectstidy(fit)# Extract the longitudinal fixed effectstidy(fit, component ="longitudinal")# Extract the survival fixed effects with confidence intervalstidy(fit, ci =TRUE)# Extract the survival fixed effects with confidence intervals based on # bootstrapped standard errorsbSE <- bootSE(fit, nboot =5, safe.boot =TRUE)tidy(fit, bootSE = bSE, ci =TRUE)# Augment original data with fitted longitudinal values and residualshvd2 <- augment(fit)# Extract model statisticsglance(fit)## End(Not run)