mjoint_tidiers function

Tidying methods for joint models for time-to-event data and multivariate longitudinal data

Tidying methods for joint models for time-to-event data and multivariate longitudinal data

These methods tidy the coefficients of joint models for time-to-event data and multivariate longitudinal data of the mjoint class from the joineRML package.

## S3 method for class 'mjoint' tidy( x, component = "survival", bootSE = NULL, conf.int = FALSE, conf.level = 0.95, ... ) ## S3 method for class 'mjoint' augment(x, data = x$data, ...) ## S3 method for class 'mjoint' glance(x, ...)

Arguments

  • x: An object of class mjoint.
  • component: Either survival (the survival component of the model, default) or longitudinal (the longitudinal component).
  • bootSE: An object of class bootSE for the corresponding model. If bootSE = NULL (the default), the function will use approximate standard error estimates calculated from the empirical information matrix.
  • conf.int: Include (1 - conf.level)% confidence intervals? Defaults to FALSE.
  • conf.level: The confidence level required.
  • ...: extra arguments (not used)
  • data: Original data this was fitted on, in a list (e.g. list(data)). This will be extracted from x if not given.

Returns

All tidying methods return a data.frame without rownames. The structure depends on the method chosen.

tidy returns one row for each estimated fixed effect depending on the component parameter. It contains the following columns: - term: The term being estimated - estimate: Estimated value

  • std.error: Standard error - statistic: Z-statistic

  • p.value: P-value computed from Z-statistic - conf.low: The lower bound of a confidence interval on estimate, if required

  • conf.high: The upper bound of a confidence interval on estimate, if required.

augment returns one row for each original observation, with columns (each prepended by a .) added. Included are the columns: - .fitted_j_0: population-level fitted values for the j-th longitudinal process - .fitted_j_1: individuals-level fitted values for the j-th longitudinal process - .resid_j_0: population-level residuals for the j-th longitudinal process - .resid_j_1: individual-level residuals for the j-th longitudinal process See fitted.mjoint

and residuals.mjoint for more information on the difference between population-level and individual-level fitted values and residuals.

glance returns one row with the columns - sigma2_j: the square root of the estimated residual variance for the j-th longitudinal process - AIC: the Akaike Information Criterion - BIC: the Bayesian Information Criterion - logLik: the data's log-likelihood under the model.

Note

If fitting a joint model with a single longitudinal process, please make sure you are using a named list to define the formula for the fixed and random effects of the longitudinal submodel.

Examples

## Not run: # Fit a joint model with bivariate longitudinal outcomes library(joineRML) data(heart.valve) hvd <- heart.valve[!is.na(heart.valve$log.grad) & !is.na(heart.valve$log.lvmi) & heart.valve$num <= 50, ] fit <- mjoint( formLongFixed = list( "grad" = log.grad ~ time + sex + hs, "lvmi" = log.lvmi ~ time + sex ), formLongRandom = list( "grad" = ~ 1 | num, "lvmi" = ~ time | num ), formSurv = Surv(fuyrs, status) ~ age, data = hvd, inits = list("gamma" = c(0.11, 1.51, 0.80)), timeVar = "time" ) # Extract the survival fixed effects tidy(fit) # Extract the longitudinal fixed effects tidy(fit, component = "longitudinal") # Extract the survival fixed effects with confidence intervals tidy(fit, ci = TRUE) # Extract the survival fixed effects with confidence intervals based on # bootstrapped standard errors bSE <- bootSE(fit, nboot = 5, safe.boot = TRUE) tidy(fit, bootSE = bSE, ci = TRUE) # Augment original data with fitted longitudinal values and residuals hvd2 <- augment(fit) # Extract model statistics glance(fit) ## End(Not run)

Author(s)

Alessandro Gasparini (alessandro.gasparini@ki.se )

  • Maintainer: Graeme L. Hickey
  • License: GPL-3 | file LICENSE
  • Last published: 2025-02-04