data: a data object (a data frame or a data.table)
names_of_vars: names of the variables
iterations: number of random data sets. If no input is entered, this value will be set as 30 * number of variables.
percentile_for_eigenvalue: percentile used in estimating bias (default = 95).
line_types: types of the lines connecting eigenvalues. By default, line_types = c("dashed", "solid")
colors: size of the dots denoting eigenvalues (default = 5).
eigenvalue_random_label_x_pos: (optional) x coordinate of the label for eigenvalues from randomly generated data.
eigenvalue_random_label_y_pos: (optional) y coordinate of the label for eigenvalues from randomly generated data.
unadj_eigenvalue_label_x_pos: (optional) x coordinate of the label for unadjusted eigenvalues
unadj_eigenvalue_label_y_pos: (optional) y coordinate of the label for unadjusted eigenvalues
label_offset_percent: How much should labels for the eigenvalue curves be offset, as a percentage of the plot's x and y range? (default = 2)
label_size: size of the labels for the eigenvalue curves (default = 6).
dot_size: size of the dots denoting eigenvalues (default = 5).
line_thickness: thickness of the eigenvalue curves (default = 1.5).
y_axis_title_vjust: position of the y axis title as a proportion of the range (default = 0.8).
title_text_size: size of the plot title (default = 26).
axis_text_size: size of the text on the axes (default = 22).
Details
The following package(s) must be installed prior to running the function: Package 'paran' v1.5.2 (or possibly a higher version) by Alexis Dinno (2018), https://cran.r-project.org/package=paran
Examples
parallel_analysis( data = mtcars, names_of_vars = c("disp","hp","drat"))# parallel_analysis(# data = mtcars, names_of_vars = c("carb", "vs", "gear", "am"))