t_test_pairwise function

t-tests, pairwise

t-tests, pairwise

Conducts a t-test for every possible pairwise comparison with Holm or Bonferroni correction

t_test_pairwise( data = NULL, iv_name = NULL, dv_name = NULL, sigfigs = 3, welch = TRUE, cohen_d = TRUE, cohen_d_w_ci = TRUE, adjust_p = "holm", bonferroni = NULL, mann_whitney = TRUE, mann_whitney_exact = FALSE, t_test_stats = TRUE, sd = FALSE, round_p = 3, anova = FALSE, round_f = 2, round_t = 2, round_t_test_df = 2 )

Arguments

  • data: a data object (a data frame or a data.table)
  • iv_name: name of the independent variable
  • dv_name: name of the dependent variable
  • sigfigs: number of significant digits to round to
  • welch: Should Welch's t-tests be conducted? By default, welch = TRUE
  • cohen_d: if cohen_d = TRUE, Cohen's d statistics will be included in the output data.table.
  • cohen_d_w_ci: if cohen_d_w_ci = TRUE, Cohen's d with 95% CI will be included in the output data.table.
  • adjust_p: the name of the method to use to adjust p-values. If adjust_p = "holm", the Holm method will be used; if adjust_p = "bonferroni", the Bonferroni method will be used. By default, adjust_p = "holm"
  • bonferroni: The use of this argument is deprecated. Use the 'adjust_p' argument instead. If bonferroni = TRUE, Bonferroni tests will be conducted for t-tests or Mann-Whitney tests.
  • mann_whitney: if TRUE, Mann-Whitney test results will be included in the output data.table. If FALSE, Mann-Whitney tests will not be performed.
  • mann_whitney_exact: this is the input for the 'exact' argument used in the 'stats::wilcox.test' function, which conducts a Mann-Whitney test. By default, mann_whitney_exact = FALSE. If you want to use the default settings for the 'stats::wilcox.test' function, consider setting mann_whitney_exact = TRUE.
  • t_test_stats: if t_test_stats = TRUE, t-test statistic and degrees of freedom will be included in the output data.table. By default, t_test_stats = TRUE
  • sd: if sd = TRUE, standard deviations will be included in the output data.table.
  • round_p: number of decimal places to which to round p-values (default = 3)
  • anova: Should a one-way ANOVA be conducted and reported? By default, anova = FALSE, but when there are more than two levels in the independent variable, the value will change such tat anova = TRUE.
  • round_f: number of decimal places to which to round the f statistic (default = 2)
  • round_t: number of decimal places to which to round the t statistic (default = 2)
  • round_t_test_df: number of decimal places to which to round the degrees of freedom for t tests (default = 2)

Returns

the output will be a data.table showing results of all pairwise comparisons between levels of the independent variable.

Examples

## Not run: # Basic example t_test_pairwise( data = iris, iv_name = "Species", dv_name = "Sepal.Length") # Welch's t-test t_test_pairwise( data = mtcars, iv_name = "am", dv_name = "hp") # A Student's t-test t_test_pairwise( data = mtcars, iv_name = "am", dv_name = "hp", welch = FALSE) # Other examples t_test_pairwise(data = iris, iv_name = "Species", dv_name = "Sepal.Length", t_test_stats = TRUE, sd = TRUE) t_test_pairwise( data = iris, iv_name = "Species", dv_name = "Sepal.Length", mann_whitney = FALSE) ## End(Not run)