Histogram density estimate for 1- and 2-dimensional data.
histde(x, binw, xmin, xmax, adj=0)## S3 method for class 'histde'predict(object,..., x)
Arguments
x: matrix of data values
binw: (vector) of binwidths
xmin,xmax: vector of minimum/maximum values for grid
adj: displacement of default anchor point, in percentage of 1 bin
object: object of class histde
...: other parameters
Returns
A histogram density estimate is an object of class histde which is a list with fields: - x: data points - same as input
eval.points: vector or list of points at which the estimate is evaluated
estimate: density estimate at eval.points
binw: (vector of) bandwidths
nbin: (vector of) number of bins
names: variable names
Details
If binw is missing, the default binwidth is bi=2∗3(1/(d+2))∗pi(d/(2d+4))∗Si∗n(−1/(d+2)), the normal scale selector.
If xmin is missing then it defaults to the data minimum. If xmax is missing then it defaults to the data maximum.
See Also
plot.histde
Examples
## positive data exampleset.seed(8192)x <-2^rnorm(100)fhat <- histde(x=x)plot(fhat, border=6)points(c(0.5,1), predict(fhat, x=c(0.5,1)))## large data example on a non-default gridset.seed(8192)x <- rmvnorm.mixt(10000, mus=c(0,0), Sigmas=invvech(c(1,0.8,1)))fhat <- histde(x=x, xmin=c(-5,-5), xmax=c(5,5))plot(fhat)## See other examples in ? plot.histde