ks1.14.3 package

Kernel Smoothing

binning

Linear binning for multivariate data

contour

Contour functions

Hbcv

Biased cross-validation (BCV) bandwidth matrix selector for bivariate ...

histde

Histogram density estimate

Hlscv

Least-squares cross-validation (LSCV) bandwidth matrix selector for mu...

Hnm

Normal mixture bandwidth

Hns

Normal scale bandwidth

Hpi

Plug-in bandwidth selector

Hscv

Smoothed cross-validation (SCV) bandwidth selector

ise.mixt

Squared error bandwidth matrix selectors for normal mixture densities

kcde

Kernel cumulative distribution/survival function estimate

kcopula

Kernel copula (density) estimate

kda

Kernel discriminant analysis (kernel classification)

kdcde

Deconvolution kernel density derivative estimate

kdde

Kernel density derivative estimate

kde.boundary

Kernel density estimate for bounded data

kde.local.test

Kernel density based local two-sample comparison test

kde

Kernel density estimate

kde.test

Kernel density based global two-sample comparison test

kde.truncate

Truncated kernel density derivative estimate

kdr

Kernel density ridge estimation

kfe

Kernel functional estimate

kfs

Kernel feature significance

kms

Kernel mean shift clustering

kroc

Kernel receiver operating characteristic (ROC) curve

ks-internal

Internal functions in the ks library

ks-package

ks

ksupp

Kernel support estimate

mixt

Normal and t-mixture distributions

plot.histde

Plot for histogram density estimate

plot.kcde

Plot for kernel cumulative distribution estimate

plot.kda

Plot for kernel discriminant analysis

plot.kdde

Plot for kernel density derivative estimate

plot.kde.loctest

Plot for kernel local significant difference regions

plot.kde.part

Partition plot for kernel density clustering

plot.kde

Plot for kernel density estimate

plot.kfs

Plot for kernel feature significance

plot.kroc

Plot for kernel receiver operating characteristic curve (ROC) estimate

plotmixt

Plot for 1- to 3-dimensional normal and t-mixture density functions

pre.transform

Pre-sphering and pre-scaling

rkde

Derived quantities from kernel density estimates

vector

Vector and vector half operators

vkde

Variable kernel density estimate.

Kernel smoothers for univariate and multivariate data, with comprehensive visualisation and bandwidth selection capabilities, including for densities, density derivatives, cumulative distributions, clustering, classification, density ridges, significant modal regions, and two-sample hypothesis tests. Chacon & Duong (2018) <doi:10.1201/9780429485572>.