plot.kde.loctest function

Plot for kernel local significant difference regions

Plot for kernel local significant difference regions

Plot for kernel local significant difference regions for 1- to 3-dimensional data.

## S3 method for class 'kde.loctest' plot(x, ...)

Arguments

  • x: object of class kde.loctest (output from kde.local.test)

  • ...: other graphics parameters:

    • lcol: colour for KDE curve (1-d)
    • col: vector of 2 colours. First colour: sample 1>sample 2, second colour: sample 1<sample2.
    • add: flag to add to current plot. Default is FALSE.
    • rugsize: height of rug-like plot (1-d)
    • add.legend: flag to add legend. Default is TRUE.
    • pos.legend: position label for legend (1-d, 2-d)
    • alphavec: vector of transparency values for contour (3-d)

    and those used in plot.kde

Returns

Plots for 1-d and 2-d are sent to graphics window. Plot for 3-d is sent to graphics/RGL window.

Details

For kde.loctest objects, the function headers are

## univariate
   plot(x, lcol, col, add=FALSE, xlab="x", ylab, rugsize, add.legend=TRUE, 
   pos.legend="topright", alpha=1, ...)
   
   ## bivariate
   plot(x, col, add=FALSE, add.legend=TRUE, pos.legend="topright", alpha=1, 
   ...)

   ## trivariate 
   plot(x, col, color, add=FALSE, box=TRUE, axes=TRUE, alphavec=c(0.5, 0.5), 
   add.legend=TRUE, ...)

See Also

kde.local.test

Examples

## bivariate data(air) air.var <- c("co2","pm10","no") air <- air[, c("date","time",air.var)] air2 <- reshape(air, idvar="date", timevar="time", direction="wide") a1 <- as.matrix(na.omit(air2[, paste0(air.var, ".08:00")])) a2 <- as.matrix(na.omit(air2[, paste0(air.var, ".20:00")])) colnames(a1) <- air.var colnames(a2) <- air.var loct <- kde.local.test(x1=a1[,c("co2","pm10")], x2=a2[,c("co2","pm10")]) plot(loct, lwd=1) ## trivariate loct <- kde.local.test(x1=a1, x2=a2) plot(loct, xlim=c(0,800), ylim=c(0,300), zlim=c(0,300))