kfe function

Kernel functional estimate

Kernel functional estimate

Kernel functional estimate for 1- to 6-dimensional data.

kfe(x, G, deriv.order, inc=1, binned, bin.par, bgridsize, deriv.vec=TRUE, add.index=TRUE, verbose=FALSE) Hpi.kfe(x, nstage=2, pilot, pre="sphere", Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") Hpi.diag.kfe(x, nstage=2, pilot, pre="scale", Hstart, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0, verbose=FALSE, optim.fun="optim") hpi.kfe(x, nstage=2, binned=FALSE, bgridsize, amise=FALSE, deriv.order=0)

Arguments

  • x: vector/matrix of data values

  • nstage: number of stages in the plug-in bandwidth selector (1 or 2)

  • pilot: "dscalar" = single pilot bandwidth (default)

    "dunconstr" = single unconstrained pilot bandwidth

  • pre: "scale" = pre.scale, "sphere" = pre.sphere

  • Hstart: initial bandwidth matrix, used in numerical optimisation

  • binned: flag for binned estimation

  • bgridsize: vector of binning grid sizes

  • amise: flag to return the minimal scaled PI value

  • deriv.order: derivative order

  • verbose: flag to print out progress information. Default is FALSE.

  • optim.fun: optimiser function: one of nlm or optim

  • G: pilot bandwidth matrix

  • inc: 0=exclude diagonal, 1=include diagonal terms in kfe calculation

  • bin.par: binning parameters - output from binning

  • deriv.vec: flag to compute duplicated partial derivatives in the vectorised form. Default is FALSE.

  • add.index: flag to output derivative indices matrix. Default is true.

Returns

Plug-in bandwidth matrix for rr-th order kernel functional estimator.

Details

Hpi.kfe is the optimal plug-in bandwidth for rr-th order kernel functional estimator based on the unconstrained pilot selectors of Chacon & Duong (2010). hpi.kfe is the 1-d equivalent, using the formulas from Wand & Jones (1995, p.70).

kfe does not usually need to be called explicitly by the user.

References

Chacon, J.E. & Duong, T. (2010) Multivariate plug-in bandwidth selection with unconstrained pilot matrices. Test, 19 , 375-398.

Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall/CRC, London.

See Also

kde.test