landsepi1.5.1 package

Landscape Epidemiology and Evolution

AgriLand

Landscape allocation

allocateCroptypeCultivars

Allocate cultivars to one croptype

allocateCultivarGenes

Allocate genes to a cultivar

allocateLandscapeCroptypes

Allocate croptypes to the landscape

antideriv_verhulst

Antiderivative of the Verhulst logistic function

checkCroptypes

Check croptypes

checkCultivars

Check cultivars

checkCultivarsGenes

Check cultivars genes

checkDispersalHost

Check host dispersal

checkDispersalPathogen

Check pathogen dispersal

checkGenes

Check genes

checkInoculum

Check inoculum

checkLandscape

Check the landscape

checkOutputs

Check outputs

checkPathogen

Check pathogen

checkPI0_mat

Check the array PI0_mat when entered manually in loadInoculum().

checkSimulParams

Check simulation parameters

checkTime

Check time

checkTreatment

Check treatment

compute_audpc100S

Compute AUDPC in a single 100% susceptible field

createSimulParams

Create a LandsepiParams object.

Cultivars_list

Cultivars Type list

demo_landsepi

Package demonstration

dispP

Dispersal matrices for rust fungi of cereal crops.

epid_output

Generation of epidemiological and economic model outputs

evol_output

Generation of evolutionary model outputs

getMatrixCroptypePatho

Get the "croptype/pathogen genotype" compatibility matrix.

getMatrixCultivarPatho

Get the "cultivar/pathogen genotype" compatibility matrix.

getMatrixGenePatho

Get the "resistance gene/pathogen genotype" compatibility matrix.

getMatrixPolyPatho

Get the "polygon/pathogen genotype" compatibility matrix.

initialize-methods

LandsepiParams

inoculumToMatrix

Inoculum To Matrix

invlogit

Inverse logit function

is.in.01

is.in.01

is.positive

is.positive

is.strict.positive

is.strict.positive

is.wholenumber

is.wholenumber

landscapeTEST

Landscapes

landsepi-package

Landscape Epidemiology and Evolution

LandsepiParams

Class LandsepiParams

loadCroptypes

Load Croptypes

loadCultivar

Load a cultivar

loadDispersalHost

Load a host dispersal matrix

loadDispersalPathogen

Load pathogen dispersal matrices

loadGene

Load a gene

loadInoculum

Load Inoculum

loadLandscape

Load a landscape

loadOutputs

Load outputs

loadPathogen

Load pathogen parameters

loadSimulParams

Load simulation parameters

loadTreatment

Load treatment parameters

logit

Logit function

model_landsepi

Model for Landscape Epidemiology & Evolution

multiN

Allocation of cultivars

periodic_cov

Periodic covariance function

plot_allocation

Plotting allocation of croptypes in a landscape

plot_freqPatho

Plotting pathotype frequencies

plotland

Plotting the landscape

price_reduction

Price reduction function

print-methods

print

resetCultivarsGenes

Reset cultivars genes

runShinyApp

runShinyApp

runSimul

Run a simulation

saveDeploymentStrategy

Save landscape and deployment strategy

setCroptypes

Set croptypes

setCultivars

Set cultivars

setDispersalHost

Set host dispersal

setDispersalPathogen

Set pathogen dispersal

setGenes

Set genes

setInoculum

Set inoculum

setLansdcape

Set the landscape

setOutputs

Set outputs

setPathogen

Set the pathogen

setSeed

Set the seed

setSeedValue

setSeedValue

setTime

Set time parameters

setTreatment

Set chemical treatments

show-methods

show

simul_landsepi

Simulation with input parameters as data.frames.

summary-methods

summary

survivalProbToMatrix

Survival probability To Matrix

switch_patho_to_aggr

Switch from index of genotype to indices of agressiveness on different...

updateReproSexProb

Update the probability of sexual reproduction

updateSurvivalProb

Update pathogen survival probability during the off-season

video

Generation of a video

A stochastic, spatially-explicit, demo-genetic model simulating the spread and evolution of a plant pathogen in a heterogeneous landscape to assess resistance deployment strategies. It is based on a spatial geometry for describing the landscape and allocation of different cultivars, a dispersal kernel for the dissemination of the pathogen, and a SEIR ('Susceptible-Exposed-Infectious-Removed’) structure with a discrete time step. It provides a useful tool to assess the performance of a wide range of deployment options with respect to their epidemiological, evolutionary and economic outcomes. Loup Rimbaud, Julien Papaïx, Jean-François Rey, Luke G Barrett, Peter H Thrall (2018) <doi:10.1371/journal.pcbi.1006067>.

  • Maintainer: Jean-François Rey
  • License: GPL (>= 2) | file LICENSE
  • Last published: 2024-09-23