A Framework for Clustering Longitudinal Data
Average posterior probability of assignment (APPA)
Convert lcMethod arguments to a list of atomic types
Convert a list of lcMethod objects to a data.frame
Generate a data.frame containing the argument values per method per ro...
Convert a list of lcMethod objects to a lcMethods list
Convert a list of lcModels to a lcModels list
Extract the method arguments as a list
latrend-specific assertions
Update the cluster names
Get the cluster names
Proportional size of each cluster
Number of trajectories per cluster
Extract cluster trajectories
Extract lcModel coefficients
lcMethod
estimation step: compose an lcMethod object
Compute the posterior confusion matrix
Check model convergence
Create the test fold data for validation
Create all k test folds from the training data
Create the training data for each of the k models in k-fold cross vali...
Define an external metric for lcModels
Define an internal metric for lcModels
lcModel deviance
Extract the residual degrees of freedom from a lcModel
Define the distance metrics for multiple types at once
Guess the response variable
Select trajectories
Estimation time
Substitute the call arguments for their evaluated values
Compute external model metric(s)
lcMethod
estimation step: logic for fitting the method to the proces...
Extract lcModel fitted values
Extract the fitted trajectories
Extract formula
Extract the formula of a lcModel
Generate longitudinal test data
Default argument values for the given method specification
Arguments to be excluded from the specification
Get the model call
Get citation info
Get the external metric definition
Get the names of the available external metrics
Get the internal metric definition
Get the names of the available internal metrics
Object label
Get the method specification
Object name
Get the trajectory ids on which the model was fitted
Extract the trajectory identifier variable
Retrieve and evaluate a lcMethod argument by name
lcMethod initialization
akmedoids interface
crimCV interface
function interface
dtwclust interface
featureBased interface
flexmix interface
funFEM interface
kml interface
lcmm interface
mclust interface
lcMetaMethod abstract class
mixAK interface
mixtools interface
mixtvem interface
Check if object is of Class
Check whether the argument of a lcMethod has a defined value.
High-level approaches to longitudinal clustering
Longitudinal dataset representation
Overview of ‘lcMethod’ estimation functions
Generics used by latrend for different classes
Supported methods for longitudinal clustering
Metrics
latrend: A Framework for Clustering Longitudinal Data
Parallel computation using latrend
Cluster longitudinal data using the specified method
Cluster longitudinal data for a list of method specifications
Cluster longitudinal data using bootstrapping
Cluster longitudinal data over k folds
Cluster longitudinal data repeatedly
lcApproxModel class
Method fit modifiers
lcMatrixMethod
lcMethod class
Longitudinal cluster method (lcMethod
) estimation procedure
Specify AKMedoids method
Specify a zero-inflated repeated-measures GBTM method
Specify time series clustering via dtwclust
Feature-based clustering
Method interface to flexmix()
Group-based trajectory modeling using flexmix
Specify a custom method based on a function
Specify a FunFEM method
Two-step clustering through latent growth curve modeling and k-means
Specify a longitudinal k-means (KML) method
Specify GBTM method
Specify GMM method using lcmm
Two-step clustering through linear regression modeling and k-means
Longitudinal latent profile analysis
Specify a GLMM iwht a normal mixture in the random effects
Specify mixed mixture regression model using mixtools
Specify non-parametric estimation for independent repeated measures
Specify a MixTVEM
Specify a random-partitioning method
Generate a list of lcMethod objects
Specify a stratification method
lcModel
class
Data filters for lcModel
Cluster-handling functions for lcModel implementations.
Longitudinal cluster result (‘lcModel’ )
Create a lcModel with pre-defined partitioning
lcModels
: a list of lcModel
objects
Construct a list of lcModel
objects
Create a lcModel with pre-defined weighted partitioning
Extract the log-likelihood of a lcModel
Argument matching with defaults and parent ellipsis expansion
Select the lcModel with the highest metric value
Mean ignoring NAs
Compute internal model metric(s)
Select the lcModel with the lowest metric value
Extract the model data that was used for fitting
Extract the model training data
Extract model training data
lcMethod argument names
Number of clusters
Number of trajectories
Number of observations used for the lcModel fit
Odds of correct classification (OCC)
Plot a lcModel
Grid plot for a list of models
Plot cluster trajectories
Plot the fitted trajectories
Plot one or more internal metrics for all lcModels
Plot the data trajectories
lcMethod
estimation step: logic for post-processing the fitted lcMod...
Posterior probability per fitted trajectory
Create a posterior probability matrix from a vector of cluster assignm...
Compute the id-specific postprob matrix from a given observation-level...
lcModel predictions
Predict the cluster assignments for new trajectories
Predict trajectories conditional on cluster membership
Posterior probability for new data
lcMethod
estimation step: method preparation logic
lcMethod
estimation step: logic for preparing the training data
Print the arguments of an lcMethod object
Print lcModels list concisely
Quantile-quantile plot
Extract lcModel residuals
Extract response variable
Extract residual standard deviation from a lcModel
Reduce the memory footprint of an object for serialization
Subsetting a lcModels list based on method arguments
Summarize a lcModel
Test the implementation of an lcMethod and associated lcModel subclass...
Test a condition
Sampling times of a lcModel
Extract the time variable
Get the trajectories
Get the cluster membership of each trajectory
Helper function for custom lcModel classes implementing fitted.lcModel...
Helper function for custom lcModel classes implementing predict.lcMode...
Convert a multiple time series matrix to a data.frame
Convert a longitudinal data.frame to a matrix
Update a method specification
Update a lcModel
lcMethod
estimation step: method argument validation logic
Weighted arithmetic mean ignoring NAs
Sample an index of a vector weighted by the elements
A framework for clustering longitudinal datasets in a standardized way. The package provides an interface to existing R packages for clustering longitudinal univariate trajectories, facilitating reproducible and transparent analyses. Additionally, standard tools are provided to support cluster analyses, including repeated estimation, model validation, and model assessment. The interface enables users to compare results between methods, and to implement and evaluate new methods with ease. The 'akmedoids' package is available from <https://github.com/MAnalytics/akmedoids>.
Useful links